搭桥和支架有什么区别| 十二生肖它第一是什么生肖| 血稠吃什么药好| 脸上脱皮是什么原因| 梦见很多小蛇是什么意思| 更年期是什么时候| 7.9什么星座| 应用化学是干什么的| 阴历是什么| 母婴传播是什么意思| 健脾去湿吃什么药| 立夏吃什么| 异质性是什么意思| 四月二十八什么星座| 润肠通便吃什么药| pray是什么意思| 俄罗斯的货币叫什么| 风热咳嗽吃什么药| 鹅蛋有什么好处| mds是什么病| 疝是什么意思| 吃驼奶粉有什么好处| blissful是什么意思| 一什么影子| 耳朵里面疼是什么原因| 二级建造师什么时候出成绩| 5月13日什么星座| 左侧附件区囊性占位是什么意思| 胃角在什么位置图片| 促胃动力药什么时候吃| 右手麻木是什么病| 检验葡萄糖用什么试剂| 仓鼠吃什么食物最好| 微信限额是什么意思| 中耳炎不能吃什么食物| 为什么腋窝老是出汗| 康乃馨的花语代表什么| 茵陈和什么泡水喝对肝脏最好| 高就什么意思| 1936年是什么年| 蓝牙耳机什么牌子好| 阴历7月22是什么日子| 胆疼是什么原因| 胃镜是什么| 蚊子咬了涂什么| 女s是什么| 梦见洗鞋子是什么意思| 吃什么对眼睛近视好| 林冲到底属什么生肖的| 仰仗是什么意思| 早晨嘴苦是什么原因引起的| 圣诞节送孩子什么礼物好| 芒果对身体有什么好处| 类风湿什么症状| 黑茶色是什么颜色| 米线里的麻油是什么油| 高血压吃什么降压药| 热玛吉是什么| 野生蜂蜜有什么好处和作用| 虚恋是什么意思| 八月初十是什么星座| 医生为为什么建议不吃生菜| 械字号产品是什么意思| 丝瓜什么时候种植最好| 梦见好多猫是什么意思| 纸尿裤nb是什么码| 胸口闷疼是什么原因| 血糖高喝什么好| 吃什么东西能变白| 手淫过度吃什么药| 什么既什么又什么| 效劳是什么意思| 脑供血不足吃什么食物| 现在有什么好的创业项目| 嘴上长痘痘是什么原因| 什么是扁平疣| 两胸中间疼是什么原因| 右眼老跳是什么原因| 冷漠什么意思| 预防感冒吃什么药| 糖尿病的症状是什么| 985是什么| 什么生| 口是心非是什么动物| 醋精是什么| 金今念什么| od值是什么意思| 狗狗窝咳吃什么药最好| 什么春什么什么| 腿脚肿是什么原因| 肉桂是什么东西| 吃什么补充酪氨酸酶| 为什么叫新四军| 甲骨文是写在什么上面的| 尿道感染应该吃什么药| 三点水一个前读什么| 梦见下大雪是什么意思| 右侧上颌窦粘膜增厚是什么意思| 降血脂喝什么茶最好| 梦见自己剪头发是什么意思| 榕字五行属什么| 什么叫腱鞘炎| 军长是什么级别| 上呼吸道感染吃什么消炎药| 天麻是什么东西| 抗酸杆菌是什么意思| 梦见磨面粉是什么意思| 血压计什么牌子好| sn是什么| 鸡蛋花的花语是什么| 鹅蛋有什么好处| 莲雾是什么| 干咳是什么病的前兆| 五加一笔是什么字| 水金龟属于什么茶| 肠胃炎吃什么药好得快| 肺癌晚期有什么症状| 钙果是什么水果| 高中什么时候分文理科| 什么叫手淫| 尿喝起来是什么味道| 西洋参是补什么的| 胎位loa是什么位置| canon是什么意思| 腰间盘突出压迫神经腿疼吃什么药| 头疼是为什么| 偏安一隅是什么意思| 骆驼吃什么| 肝腹水有什么症状| 五台山在什么地方| ms什么意思| 三个耳读什么| 愚公移山是什么故事| 今年7岁属什么生肖| 非无菌是什么意思| 审时度势是什么意思| 眉心中间有痣代表什么| 倒刺是什么原因引起的| 亚麻是什么| 九月十三是什么星座| 尖锐湿疣用什么药| 1991年属羊的是什么命| 签发是什么意思| 鹦鹉拉稀吃什么药| 碳酸钠为什么显碱性| 诸葛亮姓什么| 淋巴发炎吃什么药| 净身高是什么意思| 胆结石吃什么比较好| 什么病会引起背部疼痛| 甲状腺结节是什么原因引起的| 知鸟是什么| RH是什么| 申时是什么生肖| 膝关节弹响是什么原因| lap是什么意思| 麦冬和什么相克| 果酱样大便见于什么病| 夜来非是什么意思| 无异于是什么意思| 九死一生是什么生肖| 经常感冒吃什么增强抵抗力| 宫颈炎吃什么药好| 脸肿眼睛肿是什么原因引起的| 药流后吃什么消炎药比较好| 钾低是什么原因引起的| 空降兵属于什么兵种| 不排大便是什么原因| 手发抖是什么原因引起的年轻人| 红馆是什么地方| 中国民间为什么要吃腊八粥| 早上起来后背疼是什么原因| 送向日葵代表什么意思| 总三萜是什么| 菊花茶和枸杞一起泡水有什么好处| 回复1是什么意思| 早上喝一杯温开水有什么好处| 1.27是什么星座| 小儿湿疹是什么原因造成的| 肌无力有什么症状| ptt是什么| 白细胞高是什么原因引起的| 跌水是什么意思| 批发零售属于什么行业| 老年人喝什么蛋白粉好| 屡试不爽是什么意思| 孔雀鱼吃什么| 台湾人说什么语言| 登革热吃什么药| 肾阴虚的症状吃什么药| 右眼一直跳是什么预兆| arr是什么意思| 水色是什么颜色| 颈椎病挂号挂什么科| 胃炎胃溃疡吃什么药| 什么动物怕热| simon是什么意思| 多发结节是什么意思| 吃完芒果后不能吃什么食物| 什么丰富| 44岁月经量少是什么原因| 护理专业是干什么的| pyq是什么| 甲状腺结节吃什么食物好| 吃什么东西降尿酸| 山楂炖肉起什么作用| 痔疮出血用什么药| 脑软化灶是什么意思| 上午右眼皮跳什么预兆| 血型b型rh阳性是什么意思| 儿郎是什么意思| 什么是射频| q1什么意思| 月经来前有什么征兆| 知了长什么样| 神经内科主要看什么| 脸上黑色的小点是什么| 猫薄荷是什么| 代糖是什么| 什么坚果适合减肥吃| 编程属于什么专业| 花五行属什么| 荨麻疹有什么忌口吗| 搞基是什么| 沧州有什么好玩的地方| 朱砂有什么作用与功效| 什么是答题卡| 心率过快挂什么科| brush是什么意思| 折耳根什么味道| 情绪上来像发疯一般是什么病| 哈萨克斯坦是什么人种| 美国为什么有哥伦比亚| 加湿器什么季节用最好| 感冒吃什么好的快| 砼为什么念hun| 朱元璋为什么杀蓝玉| 妇科腺肌症是什么病| 深红色是什么颜色| 为什么会缺钙| 破瓜年华是什么意思| 大便弱阳性是什么意思| 绝眼是什么原因引起的| 心动过缓吃什么药| 梦见死人了是什么意思| 翅膀最长的鸟是什么鸟| 九五至尊什么意思| 雪媚娘是什么| 有鳞状细胞是什么意思| 精液为什么是苦的| 人中发红是什么原因| pumpkin是什么意思| 面膜什么时候敷效果最好| 跟风是什么意思| 林俊杰属什么生肖| 什么食物对眼睛视力好| 农历9月14日是什么星座| 什么是金砖国家| 二道贩子是什么意思| 百脚虫的出现意味什么| 弱阳性是什么原因| 胸疼什么原因| 为什么上小厕会有刺痛感| 起司是什么| 百度

巫山打造美丽生态旅游路

百度 咱们还是先说说为什么我们会落后31分吧,我们说说到底怎么丢掉的这么多分。

Bayesian statistics (/?be?zi?n/ BAY-zee-?n or /?be???n/ BAY-zh?n)[1] is a theory in the field of statistics based on the Bayesian interpretation of probability, where probability expresses a degree of belief in an event. The degree of belief may be based on prior knowledge about the event, such as the results of previous experiments, or on personal beliefs about the event. This differs from a number of other interpretations of probability, such as the frequentist interpretation, which views probability as the limit of the relative frequency of an event after many trials.[2] More concretely, analysis in Bayesian methods codifies prior knowledge in the form of a prior distribution.

Bayesian statistical methods use Bayes' theorem to compute and update probabilities after obtaining new data. Bayes' theorem describes the conditional probability of an event based on data as well as prior information or beliefs about the event or conditions related to the event.[3][4] For example, in Bayesian inference, Bayes' theorem can be used to estimate the parameters of a probability distribution or statistical model. Since Bayesian statistics treats probability as a degree of belief, Bayes' theorem can directly assign a probability distribution that quantifies the belief to the parameter or set of parameters.[2][3]

Bayesian statistics is named after Thomas Bayes, who formulated a specific case of Bayes' theorem in a paper published in 1763. In several papers spanning from the late 18th to the early 19th centuries, Pierre-Simon Laplace developed the Bayesian interpretation of probability.[5] Laplace used methods now considered Bayesian to solve a number of statistical problems. While many Bayesian methods were developed by later authors, the term "Bayesian" was not commonly used to describe these methods until the 1950s. Throughout much of the 20th century, Bayesian methods were viewed unfavorably by many statisticians due to philosophical and practical considerations. Many of these methods required much computation, and most widely used approaches during that time were based on the frequentist interpretation. However, with the advent of powerful computers and new algorithms like Markov chain Monte Carlo, Bayesian methods have gained increasing prominence in statistics in the 21st century.[2][6]

Bayes's theorem

edit

Bayes's theorem is used in Bayesian methods to update probabilities, which are degrees of belief, after obtaining new data. Given two events ? and ?, the conditional probability of ? given that ? is true is expressed as follows:[7]

?

where ?. Although Bayes's theorem is a fundamental result of probability theory, it has a specific interpretation in Bayesian statistics. In the above equation, ? usually represents a proposition (such as the statement that a coin lands on heads fifty percent of the time) and ? represents the evidence, or new data that is to be taken into account (such as the result of a series of coin flips). ? is the prior probability of ? which expresses one's beliefs about ? before evidence is taken into account. The prior probability may also quantify prior knowledge or information about ?. ? is the likelihood function, which can be interpreted as the probability of the evidence ? given that ? is true. The likelihood quantifies the extent to which the evidence ? supports the proposition ?. ? is the posterior probability, the probability of the proposition ? after taking the evidence ? into account. Essentially, Bayes's theorem updates one's prior beliefs ? after considering the new evidence ?.[2]

The probability of the evidence ? can be calculated using the law of total probability. If ? is a partition of the sample space, which is the set of all outcomes of an experiment, then,[2][7]

?

When there are an infinite number of outcomes, it is necessary to integrate over all outcomes to calculate ? using the law of total probability. Often, ? is difficult to calculate as the calculation would involve sums or integrals that would be time-consuming to evaluate, so often only the product of the prior and likelihood is considered, since the evidence does not change in the same analysis. The posterior is proportional to this product:[2]

?

The maximum a posteriori, which is the mode of the posterior and is often computed in Bayesian statistics using mathematical optimization methods, remains the same. The posterior can be approximated even without computing the exact value of ? with methods such as Markov chain Monte Carlo or variational Bayesian methods.[2]

Construction

edit

The classical textbook equation for the posterior in Bayesian statistics is usually stated as ? where ? is the updated probability of ? being the true parameter after collecting the data ?, ? is the likelihood of collecting the data ? given the parameter ?, ? is the prior belief of ?'s likelihood and the integral in the denominator gives the probability of collecting the data ?.

Mathematically, this version of bayes theorem can be constructed in the following way: Suppose ? to be some parametric statistical model and ? to be a probability space over the parameter space. We can construct a new probability space ? where ? is a sort of product measure defined as: ?

Now, let ? and ?, then we get: ?

and hence

?

both as empirically might be expected. Thus, Bayes' theorem states:

?

If ? (absolutely continuous w.r.t. lebesgue measure), then there exists a density such that ? and we can write:

?

Else, if ? (absolutely continuous w.r.t. counting measure), analogous we can write:

?

Thus, by identifying ? with ? and ? with ? we arrive at the classical equation stated above.

Bayesian methods

edit

The general set of statistical techniques can be divided into a number of activities, many of which have special Bayesian versions.

Bayesian inference

edit

Bayesian inference refers to statistical inference where uncertainty in inferences is quantified using probability.[8] In classical frequentist inference, model parameters and hypotheses are considered to be fixed. Probabilities are not assigned to parameters or hypotheses in frequentist inference. For example, it would not make sense in frequentist inference to directly assign a probability to an event that can only happen once, such as the result of the next flip of a fair coin. However, it would make sense to state that the proportion of heads approaches one-half as the number of coin flips increases.[9]

Statistical models specify a set of statistical assumptions and processes that represent how the sample data are generated. Statistical models have a number of parameters that can be modified. For example, a coin can be represented as samples from a Bernoulli distribution, which models two possible outcomes. The Bernoulli distribution has a single parameter equal to the probability of one outcome, which in most cases is the probability of landing on heads. Devising a good model for the data is central in Bayesian inference. In most cases, models only approximate the true process, and may not take into account certain factors influencing the data.[2] In Bayesian inference, probabilities can be assigned to model parameters. Parameters can be represented as random variables. Bayesian inference uses Bayes' theorem to update probabilities after more evidence is obtained or known.[2][10] Furthermore, Bayesian methods allow for placing priors on entire models and calculating their posterior probabilities using Bayes' theorem. These posterior probabilities are proportional to the product of the prior and the marginal likelihood, where the marginal likelihood is the integral of the sampling density over the prior distribution of the parameters. In complex models, marginal likelihoods are generally computed numerically.[11]

Statistical modeling

edit

The formulation of statistical models using Bayesian statistics has the identifying feature of requiring the specification of prior distributions for any unknown parameters. Indeed, parameters of prior distributions may themselves have prior distributions, leading to Bayesian hierarchical modeling,[12][13][14] also known as multi-level modeling. A special case is Bayesian networks.

For conducting a Bayesian statistical analysis, best practices are discussed by van de Schoot et al.[15]

For reporting the results of a Bayesian statistical analysis, Bayesian analysis reporting guidelines (BARG) are provided in an open-access article by John K. Kruschke.[16]

Design of experiments

edit

The Bayesian design of experiments includes a concept called 'influence of prior beliefs'. This approach uses sequential analysis techniques to include the outcome of earlier experiments in the design of the next experiment. This is achieved by updating 'beliefs' through the use of prior and posterior distribution. This allows the design of experiments to make good use of resources of all types. An example of this is the multi-armed bandit problem.


Exploratory analysis of Bayesian models

edit

Exploratory analysis of Bayesian models is an adaptation or extension of the exploratory data analysis approach to the needs and peculiarities of Bayesian modeling. In the words of Persi Diaconis:[17]

Exploratory data analysis seeks to reveal structure, or simple descriptions in data. We look at numbers or graphs and try to find patterns. We pursue leads suggested by background information, imagination, patterns perceived, and experience with other data analyses

The inference process generates a posterior distribution, which has a central role in Bayesian statistics, together with other distributions like the posterior predictive distribution and the prior predictive distribution. The correct visualization, analysis, and interpretation of these distributions is key to properly answer the questions that motivate the inference process.[18]

When working with Bayesian models there are a series of related tasks that need to be addressed besides inference itself:

  • Diagnoses of the quality of the inference, this is needed when using numerical methods such as Markov chain Monte Carlo techniques
  • Model criticism, including evaluations of both model assumptions and model predictions
  • Comparison of models, including model selection or model averaging
  • Preparation of the results for a particular audience

All these tasks are part of the Exploratory analysis of Bayesian models approach and successfully performing them is central to the iterative and interactive modeling process. These tasks require both numerical and visual summaries.[19][20][21]

See also

edit

References

edit
  1. ^ "Bayesian". Merriam-Webster.com Dictionary. Merriam-Webster.
  2. ^ a b c d e f g h i Gelman, Andrew; Carlin, John B.; Stern, Hal S.; Dunson, David B.; Vehtari, Aki; Rubin, Donald B. (2013). Bayesian Data Analysis (Third?ed.). Chapman and Hall/CRC. ISBN?978-1-4398-4095-5.
  3. ^ a b McElreath, Richard (2020). Statistical Rethinking?: A Bayesian Course with Examples in R and Stan (2nd?ed.). Chapman and Hall/CRC. ISBN?978-0-367-13991-9.
  4. ^ Kruschke, John (2014). Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan (2nd?ed.). Academic Press. ISBN?978-0-12-405888-0.
  5. ^ McGrayne, Sharon (2012). The Theory That Would Not Die: How Bayes' Rule Cracked the Enigma Code, Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries of Controversy (First?ed.). Chapman and Hall/CRC. ISBN?978-0-3001-8822-6.
  6. ^ Fienberg, Stephen E. (2006). "When Did Bayesian Inference Become "Bayesian"?". Bayesian Analysis. 1 (1): 1–40. doi:10.1214/06-BA101.
  7. ^ a b Grinstead, Charles M.; Snell, J. Laurie (2006). Introduction to probability (2nd?ed.). Providence, RI: American Mathematical Society. ISBN?978-0-8218-9414-9.
  8. ^ Lee, Se Yoon (2021). "Gibbs sampler and coordinate ascent variational inference: A set-theoretical review". Communications in Statistics - Theory and Methods. 51 (6): 1549–1568. arXiv:2008.01006. doi:10.1080/03610926.2021.1921214. S2CID?220935477.
  9. ^ Wakefield, Jon (2013). Bayesian and frequentist regression methods. New York, NY: Springer. ISBN?978-1-4419-0924-4.
  10. ^ Congdon, Peter (2014). Applied Bayesian modelling (2nd?ed.). Wiley. ISBN?978-1119951513.
  11. ^ Chib, Siddhartha (1995). "Marginal Likelihood from the Gibbs Output". Journal of the American Statistical Association. 90 (432): 1313–1321. doi:10.1080/01621459.1995.10476635.
  12. ^ Kruschke, J K; Vanpaemel, W (2015). "Bayesian Estimation in Hierarchical Models". In Busemeyer, J R; Wang, Z; Townsend, J T; Eidels, A (eds.). The Oxford Handbook of Computational and Mathematical Psychology (PDF). Oxford University Press. pp.?279–299.
  13. ^ Hajiramezanali, E. & Dadaneh, S. Z. & Karbalayghareh, A. & Zhou, Z. & Qian, X. Bayesian multi-domain learning for cancer subtype discovery from next-generation sequencing count data. 32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada. arXiv:1810.09433
  14. ^ Lee, Se Yoon; Mallick, Bani (2021). "Bayesian Hierarchical Modeling: Application Towards Production Results in the Eagle Ford Shale of South Texas". Sankhya B. 84: 1–43. doi:10.1007/s13571-020-00245-8.
  15. ^ van de Schoot, Rens; Depaoli, Sarah; King, Ruth; Kramer, Bianca; M?rtens, Kaspar; Tadesse, Mahlet G.; Vannucci, Marina; Gelman, Andrew; Veen, Duco; Willemsen, Joukje; Yau, Christopher (January 14, 2021). "Bayesian statistics and modelling". Nature Reviews Methods Primers. 1 (1): 1–26. doi:10.1038/s43586-020-00001-2. hdl:1874/415909. S2CID?234108684.
  16. ^ Kruschke, J K (Aug 16, 2021). "Bayesian Analysis Reporting Guidelines". Nature Human Behaviour. 5 (10): 1282–1291. doi:10.1038/s41562-021-01177-7. PMC?8526359. PMID?34400814.
  17. ^ Diaconis, Persi (2011) Theories of Data Analysis: From Magical Thinking Through Classical Statistics. John Wiley & Sons, Ltd 2:e55 doi:10.1002/9781118150702.ch1
  18. ^ Kumar, Ravin; Carroll, Colin; Hartikainen, Ari; Martin, Osvaldo (2019). "ArviZ a unified library for exploratory analysis of Bayesian models in Python". Journal of Open Source Software. 4 (33): 1143. Bibcode:2019JOSS....4.1143K. doi:10.21105/joss.01143. hdl:11336/114615.
  19. ^ Gabry, Jonah; Simpson, Daniel; Vehtari, Aki; Betancourt, Michael; Gelman, Andrew (2019). "Visualization in Bayesian workflow". Journal of the Royal Statistical Society, Series A (Statistics in Society). 182 (2): 389–402. arXiv:1709.01449. doi:10.1111/rssa.12378. S2CID?26590874.
  20. ^ Vehtari, Aki; Gelman, Andrew; Simpson, Daniel; Carpenter, Bob; Bürkner, Paul-Christian (2021). "Rank-Normalization, Folding, and Localization: An Improved R? for Assessing Convergence of MCMC (With Discussion)". Bayesian Analysis. 16 (2): 667. arXiv:1903.08008. Bibcode:2021BayAn..16..667V. doi:10.1214/20-BA1221. S2CID?88522683.
  21. ^ Martin, Osvaldo (2018). Bayesian Analysis with Python: Introduction to statistical modeling and probabilistic programming using PyMC3 and ArviZ. Packt Publishing Ltd. ISBN?9781789341652.

Further reading

edit
edit
灰枣和红枣有什么区别 什么桥下没有水脑筋急转弯 甲醛什么气味 吃黄瓜有什么好处和坏处 男大女6岁有什么说法
谈情说爱是什么意思 牙龈有点发黑是什么原因 什么人容易得红斑狼疮 动脉圆锥是什么意思 老人经常头晕是什么原因引起的
什么样的莲蓬 窒息什么意思 用什么回奶最快最有效 龙肉指的是什么肉 玙字五行属什么
藿香正气水能治什么病 头晕吃什么可以缓解 8月11号是什么星座 花肠是母猪的什么部位 医生为什么叫大夫
万兽之王是什么动物hcv8jop9ns9r.cn 水可以加什么偏旁hcv8jop1ns1r.cn 操逼是什么感觉hcv7jop9ns6r.cn 口腔溃疡该挂什么科hcv8jop7ns0r.cn 梦见火灾预示什么hcv8jop9ns1r.cn
做梦剪头发是什么意思hcv8jop5ns9r.cn 希尔福是什么药hcv8jop8ns0r.cn 营养师是干什么的hcv8jop8ns8r.cn pci手术全称是什么hcv8jop0ns2r.cn 血月代表什么hcv8jop6ns4r.cn
哮喘吃什么药管用hcv9jop6ns8r.cn 蜜饯是什么hcv8jop3ns9r.cn 吃奇亚籽有什么好处hcv8jop6ns8r.cn 胃酸过多有什么症状hcv9jop4ns1r.cn 长期打嗝是什么原因hcv7jop4ns8r.cn
风疹吃什么药好得快hcv9jop4ns9r.cn 香茅是什么东西hcv8jop4ns3r.cn 尿检是检查什么的96micro.com 胎儿双侧肾盂无分离是什么意思huizhijixie.com 月经每次都推迟是什么原因hcv8jop1ns0r.cn
百度