血管变窄吃什么能改善| 内膜b型是什么意思啊| 桃花运什么意思| apl医学上是什么意思| 万花筒是什么| 鼻子干燥吃什么中成药| 苕皮是什么做的| 浑身麻是什么原因| 礼拜是什么意思| 秋天的风像什么| 甲亢病是什么病| 一 什么云| 四个月宝宝可以吃什么辅食| 梦见已故的父母是什么兆头| 幼儿园学什么| 中国国鸟是什么鸟| 梦到女儿死了是什么意思| 鸡的五行属什么| 为什么脚会有酸臭味| 干贝是什么| 土地兼并是什么意思| 赵本山是什么学历| 为什么气血不足| 生辉是什么意思| 唔该是什么意思| 欣慰的意思是什么| 乔丹是什么牌子| 心口痛是什么原因引起的| 血糖高吃什么水果最好| 出生证号是什么| 男性内分泌失调吃什么药| 牙周病是什么| 眼睛的晶体是什么| 扁桃体发炎是什么原因引起的| 空虚什么意思| 脸跳动是什么原因| 梅核气吃什么药好得快| 为什么会长老年斑| 婴儿为什么戴银不戴金| 金丝皇菊有什么功效| 眼袋浮肿什么原因| 匪夷所思是什么意思| 44是什么意思| 膝跳反射属于什么反射| 心电图p是什么意思| glenfiddich是什么酒| 寻麻疹涂什么药膏| 翡翠什么样的好| 八一是什么节| 瑜伽是什么| 吃什么补充蛋白| 五险一金和社保有什么区别| 八月二十八是什么星座| 怀孕什么时候吃鹅蛋最好| 女生排卵是什么意思| 中秋吃什么| 九价疫苗是什么| 吃什么升白细胞比较快| 小肠炖什么好吃又营养| 女性脂肪率偏高说明什么| epa是什么| 青瓜和黄瓜有什么区别| 痦子是什么| 迎合是什么意思| 肚脐眼疼吃什么药| 前纵隔结节是什么意思| 什么是标准预防| 追剧是什么意思| 女上位是什么意思| bc是什么牌子| 彩头是什么意思| 尾巴翘上天是什么意思| 崎字五行属什么| 坐东北朝西南是什么宅| 出水痘吃什么药| mafia是什么意思| 手臂发麻是什么原因引起的| cu什么意思| 什么是溃疡| 拉肚子可以吃什么食物| 脂肪肝吃什么| 五脏六腑是什么意思| 考试前吃什么早餐| 胃痉挛是什么症状| 喝葡萄糖有什么功效与作用| 男士长脸适合什么发型| 下面老是痒是什么原因| 奄奄一息是什么意思| 血脂高吃什么能降下来| 手腕疼去医院挂什么科| 三观不合是什么意思| 什么东西能吸水| 经常偏头疼是什么原因| 吃什么东西可以降压| 左眼跳是什么意思| 结肠和直肠有什么区别| 妈妈的妹妹应该叫什么| 尿液有隐血是什么情况| 1月8日是什么星座| 在家无聊可以做什么| acca是什么专业| 男人阳萎吃什么药最好| sids是什么意思| 巨蟹男和什么星座最配| 为什么会长脂肪粒| 京ag6是什么意思| 阴道口发白是什么原因| 春的五行属性是什么| 神经外科和神经内科有什么区别| 耳顺是什么意思| 肛裂吃什么药| 属马是什么星座| 血压高什么原因| 心慌气短胸闷吃什么药| 医学pr是什么意思| 腺肌症吃什么药效果好| 人参是什么参| 送朋友什么礼物好| 元首是什么意思| 墨西哥人是什么人种| 法西斯战争是什么意思| 梦见补的牙齿掉了是什么意思| 卒中优先是什么意思| 胃蛋白酶原1偏低是什么意思| 阴道感染有什么症状| 牙齿深覆合是什么意思| 胆碱酯酶低是什么原因| 白细胞30是什么意思| 激素是什么| 广州和广东有什么区别| 化疗前要做什么检查| 人为什么不可以偏食| 王晶老婆叫什么名字| 更年期出汗吃什么药| 粘鞋子用什么胶水最好| 日语为什么怎么说| 柠檬什么时候开花结果| 湿疹有什么症状和图| 芡实是什么| 舌中间有裂纹是什么原因| 百草枯什么味道| animal什么意思| 人得布病什么症状| 辐射是什么| 5.13是什么星座| 葡式蛋挞为什么叫葡式| 颈椎ct能检查出什么| 眼睛睁不开是什么原因| offer是什么意思| 四面弹是什么面料| 孩子为什么会得抽动症| 山对什么| 肌底液是干什么用的| 甲状腺双叶结节什么意思| 种植什么药材最赚钱| 零零年属什么| 什么是孽缘| 占有欲强是什么意思| 肚子左下方是什么器官| 户籍所在地是什么| 电焊打眼睛用什么眼药水| 人参泡酒有什么功效和作用| 女人梦见下雪是什么征兆| 女生为什么有喉结| 2月1日是什么星座| 西兰花和什么菜搭配| 留存是什么意思| 火腿是什么肉| 梅子是什么| alin是什么意思| 羊肉馅饺子配什么菜好| 吃什么东西能流产| 左肋骨下面是什么器官| 为什么冬天会下雪| 子宫回声欠均匀是什么意思| 6月23日什么星座| 献完血吃什么东西补血| 木堂念什么| 佑五行属什么| 心脏疼吃什么药| 痛风用什么药治疗最好| 灰指甲是什么症状| 柳州有什么大学| tasty是什么意思| 破月什么意思| 什么叫欲擒故纵| 喝酒脸红是什么原因造成的| 2030年是什么年| 绿幽灵五行属什么| 男人下面有异味什么原因| 忖量是什么意思| 真菌镜检阴性是什么意思| 两个月没有来月经了是什么原因| 0z是什么单位| 混圈是什么意思| 甲功不正常会得什么病| 象牙白适合什么肤色| 放屁多是什么原因呢| 为什么医院都让喝雀巢奶粉| 啤酒是什么酿造的| 维生素d3吃多了有什么副作用| 宝宝肤专家软膏主要治什么| 王晶老婆叫什么名字| 肺结节吃什么食物散结节最快| 气短吃什么药立马见效| 心动过缓是什么意思| acs是什么| 吃什么降胆固醇最快| cold是什么意思| roi是什么| 机能是什么意思| 36是什么生肖| 什么蔬菜不能放冰箱| 什么级别可以配秘书| 男性检查男科都查什么| 夏天适合吃什么| 7.12是什么星座| 放疗后吃什么恢复的快| 齁不住是什么意思| 流鼻血不止是什么原因| 氪金是什么意思| 溶栓治疗是什么意思| 阔以是什么意思| 喝什么| 一次不忠终身不用什么意思| 合疗和医保有什么区别| 芊芊学子是什么意思| 妇科炎症小腹坠痛吃什么药| 什么是直流电| burberry什么牌子| 拔完牙吃什么| 两色富足间是什么生肖| 后背疼是什么原因引起的女性| 屁股长痘痘是什么原因| 肾阴阳两虚吃什么中成药| 什么样的人不能坐飞机| 房奴什么意思| 女人什么眉毛最有福气| 观音土是什么| 去香港自由行要办什么手续| 做孕检都检查什么项目| 炎细胞浸润是什么意思| 附耳是什么| 慢性肠炎吃什么药调理| 什么洗发水好| hrv是什么| 胃火大吃什么药| 这个季节吃什么水果| 耳鸣是什么| 空谷幽兰下一句是什么| 自缢是什么意思| 什么条什么理| 沙门氏菌是什么| wonderflower是什么牌子| 白球比例偏高说明什么| 吃避孕药会有什么副作用| 入党有什么好处| 殊胜是什么意思| 符号是什么意思| 中暑吃什么食物好| 什么动物没有眼睛| 老花眼是什么症状| 为什么牙齿会松动| dwi是什么检查| 百度

1990年4月18日 我国首批冷冻保存试管小鼠诞生

百度 好的白酒其外盒、标签的印刷是十分讲究的,纸质精良白净、字体规范清晰,色泽鲜艳均匀,图案套色准确,油墨线条不重叠。

Bayesian hierarchical modelling is a statistical model written in multiple levels (hierarchical form) that estimates the posterior distribution of model parameters using the Bayesian method.[1] The sub-models combine to form the hierarchical model, and Bayes' theorem is used to integrate them with the observed data and account for all the uncertainty that is present. This integration enables calculation of updated posterior over the (hyper)parameters, effectively updating prior beliefs in light of the observed data.

Frequentist statistics may yield conclusions seemingly incompatible with those offered by Bayesian statistics due to the Bayesian treatment of the parameters as random variables and its use of subjective information in establishing assumptions on these parameters.[2] As the approaches answer different questions the formal results aren't technically contradictory but the two approaches disagree over which answer is relevant to particular applications. Bayesians argue that relevant information regarding decision-making and updating beliefs cannot be ignored and that hierarchical modeling has the potential to overrule classical methods in applications where respondents give multiple observational data. Moreover, the model has proven to be robust, with the posterior distribution less sensitive to the more flexible hierarchical priors.

Hierarchical modeling, as its name implies, retains nested data structure, and is used when information is available at several different levels of observational units. For example, in epidemiological modeling to describe infection trajectories for multiple countries, observational units are countries, and each country has its own time-based profile of daily infected cases.[3] In decline curve analysis to describe oil or gas production decline curve for multiple wells, observational units are oil or gas wells in a reservoir region, and each well has each own time-based profile of oil or gas production rates (usually, barrels per month).[4] Hierarchical modeling is used to devise computation based strategies for multiparameter problems.[5]

Philosophy

edit

Statistical methods and models commonly involve multiple parameters that can be regarded as related or connected in such a way that the problem implies a dependence of the joint probability model for these parameters.[6] Individual degrees of belief, expressed in the form of probabilities, come with uncertainty.[7] Amidst this is the change of the degrees of belief over time. As was stated by Professor José M. Bernardo and Professor Adrian F. Smith, “The actuality of the learning process consists in the evolution of individual and subjective beliefs about the reality.” These subjective probabilities are more directly involved in the mind rather than the physical probabilities.[7] Hence, it is with this need of updating beliefs that Bayesians have formulated an alternative statistical model which takes into account the prior occurrence of a particular event.[8]

Bayes' theorem

edit

The assumed occurrence of a real-world event will typically modify preferences between certain options. This is done by modifying the degrees of belief attached, by an individual, to the events defining the options.[9]

Suppose in a study of the effectiveness of cardiac treatments, with the patients in hospital j having survival probability ?, the survival probability will be updated with the occurrence of y, the event in which a controversial serum is created which, as believed by some, increases survival in cardiac patients.

In order to make updated probability statements about ?, given the occurrence of event y, we must begin with a model providing a joint probability distribution for ? and y. This can be written as a product of the two distributions that are often referred to as the prior distribution ? and the sampling distribution ? respectively:

?

Using the basic property of conditional probability, the posterior distribution will yield:

?

This equation, showing the relationship between the conditional probability and the individual events, is known as Bayes' theorem. This simple expression encapsulates the technical core of Bayesian inference which aims to deconstruct the probability, ?, relative to solvable subsets of its supportive evidence.[9]

Exchangeability

edit

The usual starting point of a statistical analysis is the assumption that the n values ? are exchangeable. If no information – other than data y – is available to distinguish any of the ?’s from any others, and no ordering or grouping of the parameters can be made, one must assume symmetry of prior distribution parameters.[10] This symmetry is represented probabilistically by exchangeability. Generally, it is useful and appropriate to model data from an exchangeable distribution as independently and identically distributed, given some unknown parameter vector ?, with distribution ?.

Finite exchangeability

edit

For a fixed number n, the set ? is exchangeable if the joint probability ? is invariant under permutations of the indices. That is, for every permutation ? or ? of (1, 2, …, n), ?[11]

The following is an exchangeable, but not independent and identical (iid), example: Consider an urn with a red ball and a blue ball inside, with probability ? of drawing either. Balls are drawn without replacement, i.e. after one ball is drawn from the ? balls, there will be ? remaining balls left for the next draw.

?

The probability of selecting a red ball in the first draw and a blue ball in the second draw is equal to the probability of selecting a blue ball on the first draw and a red on the second, both of which are 1/2:

?.

This makes ? and ? exchangeable.

But the probability of selecting a red ball on the second draw given that the red ball has already been selected in the first is 0. This is not equal to the probability that the red ball is selected in the second draw, which is 1/2:

?.

Thus, ? and ? are not independent.

If ? are independent and identically distributed, then they are exchangeable, but the converse is not necessarily true.[12]

Infinite exchangeability

edit

Infinite exchangeability is the property that every finite subset of an infinite sequence ?, ? is exchangeable. For any n, the sequence ? is exchangeable.[12]

Hierarchical models

edit

Components

edit

Bayesian hierarchical modeling makes use of two important concepts in deriving the posterior distribution,[1] namely:

  1. Hyperparameters: parameters of the prior distribution
  2. Hyperpriors: distributions of Hyperparameters

Suppose a random variable Y follows a normal distribution with parameter ? as the mean and 1 as the variance, that is ?. The tilde relation ? can be read as "has the distribution of" or "is distributed as". Suppose also that the parameter ? has a distribution given by a normal distribution with mean ? and variance 1, i.e. ?. Furthermore, ? follows another distribution given, for example, by the standard normal distribution, ?. The parameter ? is called the hyperparameter, while its distribution given by ? is an example of a hyperprior distribution. The notation of the distribution of Y changes as another parameter is added, i.e. ?. If there is another stage, say, ? following another normal distribution with a mean of ? and a variance of ?, then ?, ?? and ? can also be called hyperparameters with hyperprior distributions.[6]

Framework

edit

Let ? be an observation and ? a parameter governing the data generating process for ?. Assume further that the parameters ? are generated exchangeably from a common population, with distribution governed by a hyperparameter ?.
The Bayesian hierarchical model contains the following stages:

?
?
?

The likelihood, as seen in stage I is ?, with ? as its prior distribution. Note that the likelihood depends on ? only through ?.

The prior distribution from stage I can be broken down into:

? [from the definition of conditional probability]

With ? as its hyperparameter with hyperprior distribution, ?.

Thus, the posterior distribution is proportional to:

? [using Bayes' Theorem]
?[13]

Example calculation

edit

As an example, a teacher wants to estimate how well a student did on the SAT. The teacher uses the current grade point average (GPA) of the student for an estimate. Their current GPA, denoted by ?, has a likelihood given by some probability function with parameter ?, i.e. ?. This parameter ? is the SAT score of the student. The SAT score is viewed as a sample coming from a common population distribution indexed by another parameter ?, which is the high school grade of the student (freshman, sophomore, junior or senior).[14] That is, ?. Moreover, the hyperparameter ? follows its own distribution given by ?, a hyperprior.

These relationships can be used to calculate the likelihood of a specific SAT score relative to a particular GPA:

?
?

All information in the problem will be used to solve for the posterior distribution. Instead of solving only using the prior distribution and the likelihood function, using hyperpriors allows a more nuanced distinction of relationships between given variables.[15]

2-stage hierarchical model

edit

In general, the joint posterior distribution of interest in 2-stage hierarchical models is:

?
?[15]

3-stage hierarchical model

edit

For 3-stage hierarchical models, the posterior distribution is given by:

?
?[15]

Bayesian nonlinear mixed-effects model

edit
?
Bayesian research cycle using Bayesian nonlinear mixed effects model: (a) standard research cycle and (b) Bayesian-specific workflow [16].

A three stage version of Bayesian hierarchical modeling could be used to calculate probability at 1) an individual level, 2) at the level of population and 3) the prior, which is an assumed probability distribution that takes place before evidence is initially acquired:

Stage 1: Individual-Level Model

?

Stage 2: Population Model

?

Stage 3: Prior

?

Here, ? denotes the continuous response of the ?-th subject at the time point ?, and ? is the ?-th covariate of the ?-th subject. Parameters involved in the model are written in Greek letters. The variable ? is a known function parameterized by the ?-dimensional vector ?.

Typically, ? is a `nonlinear' function and describes the temporal trajectory of individuals. In the model, ? and ? describe within-individual variability and between-individual variability, respectively. If the prior is not considered, the relationship reduces to a frequentist nonlinear mixed-effect model.

A central task in the application of the Bayesian nonlinear mixed-effect models is to evaluate posterior density:

?

?

?


The panel on the right displays Bayesian research cycle using Bayesian nonlinear mixed-effects model.[16] A research cycle using the Bayesian nonlinear mixed-effects model comprises two steps: (a) standard research cycle and (b) Bayesian-specific workflow.

A standard research cycle involves 1) literature review, 2) defining a problem and 3) specifying the research question and hypothesis. Bayesian-specific workflow stratifies this approach to include three sub-steps: (b)–(i) formalizing prior distributions based on background knowledge and prior elicitation; (b)–(ii) determining the likelihood function based on a nonlinear function ?; and (b)–(iii) making a posterior inference. The resulting posterior inference can be used to start a new research cycle.

Applications

edit

Hierarchical Bayesian frameworks have been applied for modeling, e.g., Reinforcement learning and decision-making tasks[17], antigen mutation effects on the immune system[18], and ecological processes affecting species distribution[19], to mention a few. Pymc is a flexible open source Python package supporting such modeling[20].

References

edit
  1. ^ a b Allenby, Rossi, McCulloch (January 2005). "Hierarchical Bayes Model: A Practitioner’s Guide". Journal of Bayesian Applications in Marketing, pp. 1–4. Retrieved 26 April 2014, p. 3
  2. ^ Gelman, Andrew; Carlin, John B.; Stern, Hal S. & Rubin, Donald B. (2004). Bayesian Data Analysis (second?ed.). Boca Raton, Florida: CRC Press. pp.?4–5. ISBN?1-58488-388-X.
  3. ^ Lee, Se Yoon; Lei, Bowen; Mallick, Bani (2020). "Estimation of COVID-19 spread curves integrating global data and borrowing information". PLOS ONE. 15 (7): e0236860. arXiv:2005.00662. Bibcode:2020PLoSO..1536860L. doi:10.1371/journal.pone.0236860. PMC?7390340. PMID?32726361.
  4. ^ Lee, Se Yoon; Mallick, Bani (2021). "Bayesian Hierarchical Modeling: Application Towards Production Results in the Eagle Ford Shale of South Texas". Sankhya B. 84: 1–43. doi:10.1007/s13571-020-00245-8.
  5. ^ Gelman et al. 2004, p.?6.
  6. ^ a b Gelman et al. 2004, p.?117.
  7. ^ a b Good, I.J. (1980). "Some history of the hierarchical Bayesian methodology". Trabajos de Estadistica y de Investigacion Operativa. 31: 489–519. doi:10.1007/BF02888365. S2CID?121270218.
  8. ^ Bernardo, Smith(1994). Bayesian Theory. Chichester, England: John Wiley & Sons, ISBN?0-471-92416-4, p. 23
  9. ^ a b Gelman et al. 2004, pp.?6–8.
  10. ^ Bernardo, Degroot, Lindley (September 1983). “Proceedings of the Second Valencia International Meeting”. Bayesian Statistics 2. Amsterdam: Elsevier Science Publishers B.V, ISBN?0-444-87746-0, pp. 167–168
  11. ^ Gelman et al. 2004, pp.?121–125.
  12. ^ a b Diaconis, Freedman (1980). “Finite exchangeable sequences”. Annals of Probability, pp. 745–747
  13. ^ Bernardo, Degroot, Lindley (September 1983). “Proceedings of the Second Valencia International Meeting”. Bayesian Statistics 2. Amsterdam: Elsevier Science Publishers B.V, ISBN?0-444-87746-0, pp. 371–372
  14. ^ Gelman et al. 2004, pp.?120–121.
  15. ^ a b c Box G. E. P., Tiao G. C. (1965). "Multiparameter problem from a bayesian point of view". Multiparameter Problems From A Bayesian Point of View Volume 36 Number 5. New York City: John Wiley & Sons, ISBN?0-471-57428-7
  16. ^ a b Lee, Se Yoon (2022). "Bayesian Nonlinear Models for Repeated Measurement Data: An Overview, Implementation, and Applications". Mathematics. 10 (6): 898. arXiv:2201.12430. doi:10.3390/math10060898.
  17. ^ Ahn, Woo-Young; Haines, Nathaniel; Zhang, Lei (2025-08-14). "Revealing Neurocomputational Mechanisms of Reinforcement Learning and Decision-Making With the hBayesDM Package". Computational Psychiatry. 1: 24. doi:10.1162/CPSY_a_00002. ISSN?2379-6227. PMID?29601060.
  18. ^ Banerjee, Amitava; Pattinson, David J.; Wincek, Cornelia L.; Bunk, Paul; Axhemi, Armend; Chapin, Sarah R.; Navlakha, Saket; Meyer, Hannah V. (2025-08-14). "T cell receptor cross-reactivity prediction improved by a comprehensive mutational scan database". Cell Systems. 0. doi:10.1016/j.cels.2025.101345. ISSN?2405-4712. PMID?40713946.
  19. ^ Gelfand, Alan E.; Holder, Mark; Latimer, Andrew; Lewis, Paul O.; Rebelo, Anthony G.; Silander, John A.; Wu, Shanshan (2025-08-14). "Explaining species distribution patterns through hierarchical modeling". Bayesian Analysis. 1 (1). doi:10.1214/06-ba102. ISSN?1936-0975.
  20. ^ Abril-Pla, Oriol; Andreani, Virgile; Carroll, Colin; Dong, Larry; Fonnesbeck, Christopher J.; Kochurov, Maxim; Kumar, Ravin; Lao, Junpeng; Luhmann, Christian C.; Martin, Osvaldo A.; Osthege, Michael; Vieira, Ricardo; Wiecki, Thomas; Zinkov, Robert (2025-08-14). "PyMC: a modern, and comprehensive probabilistic programming framework in Python". PeerJ Computer Science. 9 e1516. doi:10.7717/peerj-cs.1516. ISSN?2376-5992. PMC?10495961. PMID?37705656.
津津有味什么意思 操逼是什么感觉 聚字五行属什么 乙肝核心抗体偏高是什么意思 什么是混合磨玻璃结节
义子是什么意思 什么原因得湿疹 脑膜炎吃什么药 蜘蛛痣是什么样的 hpv病毒是什么病毒
kim是什么意思 亟待解决什么意思 干眼症有什么症状 血小板数目偏高是什么意思 69式是什么意思
什么是乙肝 日加立念什么 猜疑是什么意思 阴血亏虚吃什么中成药 脾虚吃什么食物补最快
梦见捡金首饰是什么意思hcv9jop4ns2r.cn 膳食纤维有什么作用hcv9jop1ns8r.cn 什么是霸凌hcv7jop9ns0r.cn 什么叫克隆hcv8jop6ns1r.cn 8月23号是什么星座hcv9jop4ns3r.cn
凌迟是什么hcv8jop5ns0r.cn 9月3日是什么纪念日hcv8jop2ns0r.cn 脂蛋白磷脂酶a2高说明什么hcv8jop0ns6r.cn 4月11号是什么星座hcv9jop6ns0r.cn 中性粒细胞数目偏高是什么意思hcv8jop1ns8r.cn
馒头逼是什么意思hcv8jop4ns6r.cn 点背是什么意思hcv8jop4ns7r.cn 胎膜早破是什么症状hcv9jop7ns0r.cn 97年是什么生肖hcv9jop3ns6r.cn 带鱼为什么是扁的hcv8jop5ns0r.cn
减肥喝什么水hcv9jop1ns3r.cn 每天经常放屁什么原因hcv8jop9ns5r.cn 甲状腺过氧化物酶抗体高说明什么hcv7jop9ns3r.cn 肠胃炎吃什么药效果好hcv9jop0ns8r.cn 甲龙吃什么hcv9jop4ns6r.cn
百度