宝宝睡觉流口水是什么原因| 莫名其妙的心情不好是什么原因| 胎脂是什么原因造成的| 为什么拉的屎是墨绿色| 白鹭吃什么| 小厨宝是什么东西| 早晨起床手麻是什么原因| 抽筋是什么病| 骨科什么意思| 唐氏宝宝是什么意思| 珙桐是什么植物| 9月3号什么日子| 菁字五行属什么| 脸书是什么意思| 小腿疼痛什么原因引起的| 有什么好吃的| 心阳虚吃什么药| 无妄之灾什么意思| 为什么喜欢秋天| 深圳市长是什么级别| 丘比特是什么意思| 胡思乱想是什么意思| 水洗棉是什么| 二维是什么意思| 外阴炎用什么药| 山竹有什么功效| 钠低是什么原因造成的| 怀孕初期需要注意什么| 孕妇胃疼吃什么药| 滑石粉有什么作用| 印度是什么人种| 肚脐周围是什么器官| 预防更年期提前应该吃点什么药| 神经官能症有什么症状表现| 龙眼是什么季节的水果| 月经没来吃什么药可以催月经来| 领结婚证需要准备什么| 手脚发热吃什么药| 心形脸适合什么发型| 什么鲸鱼最大| 什么是糖化血红蛋白| 乌鸡放什么炖补气补血| 排卵期出血是什么原因引起的| 男子精少吃什么药可以生精| 鸡头米什么时候上市| 头昏应该挂什么科| 喜形于色是什么意思| 秦二世叫什么名字| 香蕉皮擦脸有什么作用与功效| 什么酒不能喝| 什么是有机蔬菜| 症候群什么意思| 什么时候人流| 手心痒是什么原因| 八月一日是什么日子| 悬雍垂发炎吃什么药| 无话不谈是什么意思| hpv81阳性是什么意思| 痤疮吃什么药| 阴虚火旺吃什么中成药| 妈祖属什么生肖| 阿司匹林不能和什么药一起吃| 坏血症什么症状| 肠胃功能紊乱什么症状| 孙俪最新电视剧叫什么| 中年人喝什么奶粉好| 世界上最深的湖是什么| 3f是什么意思| 见什么知什么| 钛合金是什么材料| 彩虹代表什么生肖| 马甲线是什么意思| 做梦捡到钱了什么预兆| 抑郁症是什么| 什么米之乡| 窦性心律t波改变是什么意思| 胃酸过多吃什么好| 梦到洗衣服是什么意思| 做梦梦见火是什么征兆| 败血症是什么症状| 胎儿肾盂分离是什么意思| 丙肝为什么会自愈| 甲硝唑吃多了有什么危害| 拔牙什么时候拔最好| wht什么颜色| 牛鞭是什么东西| 两女一杯什么意思| 喝什么水最解渴| 血清检查能测出什么| 流鼻涕感冒吃什么药| 糖尿病可以吃什么零食| 什么拉车连蹦带跳| 戊申五行属什么| 牛的三合和六个合生肖是什么| 螃蟹代表什么生肖| 白带什么颜色| 不孕为什么要查胰岛素| 神经衰弱吃什么药效果最好| 金銮殿是什么意思| 单位时间是什么意思| 奈何桥是什么意思| 鎏是什么意思| 球蛋白低是什么原因| 正的五行属性是什么| 纯洁是什么意思| 宫颈炎吃什么药好| 盐城有什么特产| 炸东西用什么油| 胃窦炎是什么症状| 跳梁小丑指什么生肖| 眩晕症是什么| 颈部淋巴结肿大是什么原因| 司空见惯什么意思| 头晕为什么做眼震检查| 咏柳的咏是什么意思| 地软是什么| 细菌感染吃什么抗生素| 来月经喝什么茶好| 93年属什么的生肖| 咽拭子是检查什么的| 硬汉是什么意思| 12月27日是什么星座| 眼睛飞蚊症用什么药能治好| 面部脂溢性皮炎用什么药| 小孩查微量元素挂什么科| 10.21是什么星座| 榴莲为什么是水果之王| 那天午后我站在你家门口什么歌| 癫痫病是什么原因引起的| ad是什么病| 七叶子是什么意思| 甲基蓝治疗什么鱼病| 骨感是什么意思| 耳鸣脑鸣是什么原因引起的| 辣椒炒肉用什么肉| 幼犬吃什么| 男子精少吃什么药可以生精| 胸口隐隐作痛挂什么科| 蝉为什么叫| 伥鬼是什么意思| 香茗是什么意思| 一流是什么意思| 牛跟什么生肖相冲| 沮丧是什么意思| 今年为什么闰六月| 4月4日什么星座| 鹌鹑蛋不能和什么一起吃| 眼睑肿是什么原因| 发低烧有什么症状| 尿检隐血弱阳性是什么意思| 结肠炎吃什么药| 招蚊子咬是什么血型| 西京医院什么科室最强| 子宫大是什么原因| 毛豆炒什么好吃| 乙肝二四五阳性什么意思| 双鱼女和什么座最配对| 吴亦凡演过什么电影| 附件炎吃什么药好| 梦见下小雨是什么征兆| 神阙穴在什么位置| 吃什么食物对头发好| crispi是什么牌子| 什么是转氨酶| 星星代表什么生肖| 主动脉钙化什么意思| 男人硬不起来是什么原因| 省军区司令员是什么级别| 什么是体液| 月经要来之前有什么症状| 白手起家是什么生肖| 萝卜不能和什么一起吃| 恻隐之心什么意思| 尘肺病吃什么能排出尘| 动脉硬化挂什么科| 淞字五行属什么| 白玫瑰的花语是什么| 高血脂是什么意思| 大长今是什么意思| 双子女和什么座最配对| 藜芦是什么东西| 科学家是干什么的| 迷你巴拉巴拉和巴拉巴拉什么关系| 神经性皮炎不能吃什么食物| 呦呦是什么意思| 注明是什么意思| 女仆是什么意思| 什么是冠心病| 焦虑症吃什么中成药| 经常口腔溃疡吃什么药| 有什么好看的国漫| 补血吃什么| 北京有什么特产好吃| 天肖是什么生肖| 鬼市是什么意思| 烧心吃什么药| 撅眼是什么原因造成的| 黄褐斑内调吃什么中药| 女人什么时候绝经正常| 什么叫不动产| 血热吃什么药效果好| 全身酸痛是什么原因| 2.25是什么星座| 哺乳期发烧吃什么药| 上腹部饱胀是什么原因| 十一月九号是什么星座| 怀挺是什么意思| 胸是什么| 隐疾是什么意思| 蜜月是什么意思| 子宫痒是什么原因| cg是什么| 抽血化验能查出什么| 出阁宴是什么意思| 牙龈肿痛挂什么科| 湿疹为什么要查肝功能| 盲人按摩有什么好处| 卧蚕和眼袋有什么区别| 腹膜转移是什么意思| 胸膜炎吃什么药好| 月经不正常是什么原因| 反物质是什么| 西洋参不能和什么一起吃| 小清新是什么意思啊| 心脏不舒服挂什么科室| 长颈鹿吃什么树叶| mlb是什么档次| 现在什么季节| 鄙视你是什么意思| 装模作样是什么生肖| 月经不来要吃什么药| 男性支原体感染什么症状| 少阳是什么意思| 种草是什么意思| 为什么尿液一直是黄的| 男性做彩超要检查什么| 女人身体发热预示什么| 做梦梦见出车祸是什么征兆| 来月经腰疼的厉害是什么原因| 孩子生化了是什么意思| 手比脸白是什么原因| 女性腰肌劳损吃什么药| 室性期前收缩是什么意思| 氮气是什么| 哀怨是什么意思| 阿尔茨海默症是什么症状| 梦见自己吐血是什么征兆| 糖类抗原724偏高是什么原因| 杏仁和什么不能一起吃| 面试穿什么衣服比较合适| 嘴唇发白是什么原因引起的| chemical是什么意思| 吃什么受孕率又快又高| 吃什么促进新陈代谢| 桃子不能和什么一起吃| 什么是慢阻肺| 右下腹疼痛挂什么科| 脸颊两边长斑是什么原因| 羊肉补什么| 颈动脉斑块吃什么药| 三月三是什么星座| 场面是什么意思| 深夜里买醉是什么歌| 氯雷他定片是什么药| 百度

Studie Tai Chi knnte für Schmerzlinderung effektiver als aerobes Training sein

百度 当年一度传出赵薇跟范冰冰不合,恰好海清跟范冰冰演《赵氏孤儿》的时候也有不合传闻。

In statistics, interval estimation is the use of sample data to estimate an interval of possible values of a (sample) parameter of interest. This is in contrast to point estimation, which gives a single value.[1]

The most prevalent forms of interval estimation are confidence intervals (a frequentist method) and credible intervals (a Bayesian method).[2] Less common forms include likelihood intervals, fiducial intervals, tolerance intervals, and prediction intervals. For a non-statistical method, interval estimates can be deduced from fuzzy logic.

Types

edit

Confidence intervals

edit

Confidence intervals are used to estimate the parameter of interest from a sampled data set, commonly the mean or standard deviation. A confidence interval states there is a 100γ% confidence that the parameter of interest is within a lower and upper bound. A common misconception of confidence intervals is 100γ% of the data set fits within or above/below the bounds, this is referred to as a tolerance interval, which is discussed below.

There are multiple methods used to build a confidence interval, the correct choice depends on the data being analyzed. For a normal distribution with a known variance, one uses the z-table to create an interval where a confidence level of 100γ% can be obtained centered around the sample mean from a data set of n measurements, . For a Binomial distribution, confidence intervals can be approximated using the Wald Approximate Method, Jeffreys interval, and Clopper-Pearson interval. The Jeffrey method can also be used to approximate intervals for a Poisson distribution.[3] If the underlying distribution is unknown, one can utilize bootstrapping to create bounds about the median of the data set.

Credible intervals

edit
?
Bayesian Distribution: Adjusting a prior distribution to form a posterior probability.

As opposed to a confidence interval, a credible interval requires a prior assumption, modifying the assumption utilizing a Bayes factor, and determining a posterior distribution. Utilizing the posterior distribution, one can determine a 100γ% probability the parameter of interest is included, as opposed to the confidence interval where one can be 100γ% confident that an estimate is included within an interval.[4]

?

While a prior assumption is helpful towards providing more data towards building an interval, it removes the objectivity of a confidence interval. A prior will be used to inform a posterior, if unchallenged this prior can lead to incorrect predictions.[5]

The credible interval's bounds are variable, unlike the confidence interval. There are multiple methods to determine where the correct upper and lower limits should be located. Common techniques to adjust the bounds of the interval include highest posterior density interval (HPDI), equal-tailed interval, or choosing the center the interval around the mean.

Less common forms

edit

Likelihood-based

edit

Utilizes the principles of a likelihood function to estimate the parameter of interest. Utilizing the likelihood-based method, confidence intervals can be found for exponential, Weibull, and lognormal means. Additionally, likelihood-based approaches can give confidence intervals for the standard deviation. It is also possible to create a prediction interval by combining the likelihood function and the future random variable.[3]

Fiducial

edit

Fiducial inference utilizes a data set, carefully removes the noise and recovers a distribution estimator, Generalized Fiducial Distribution (GFD). Without the use of Bayes' Theorem, there is no assumption of a prior, much like confidence intervals. Fiducial inference is a less common form of statistical inference. The founder, R.A. Fisher, who had been developing inverse probability methods, had his own questions about the validity of the process. While fiducial inference was developed in the early twentieth century, the late twentieth century believed that the method was inferior to the frequentist and Bayesian approaches but held an important place in historical context for statistical inference. However, modern-day approaches have generalized the fiducial interval into Generalized Fiducial Inference (GFI), which can be used to estimate discrete and continuous data sets.[6]

Tolerance

edit

Tolerance intervals use collected data set population to obtain an interval, within tolerance limits, containing 100γ% values. Examples typically used to describe tolerance intervals include manufacturing. In this context, a percentage of an existing product set is evaluated to ensure that a percentage of the population is included within tolerance limits. When creating tolerance intervals, the bounds can be written in terms of an upper and lower tolerance limit, utilizing the sample mean, ?, and the sample standard deviation, s.

? for two-sided intervals

for two-sided intervals

And in the case of one-sided intervals where the tolerance is required only above or below a critical value,

?
?

? varies by distribution and the number of sides, i, in the interval estimate. In a normal distribution, ??can be expressed as [7]

?

Where,

? is the critical value of the chi-square distribution utilizing ? degrees of freedom that is exceeded with probability ?.

? is the critical values obtained from the normal distribution.

Prediction

edit

A prediction interval estimates the interval containing future samples with some confidence, γ. Prediction intervals can be used for both Bayesian and frequentist contexts. These intervals are typically used in regression data sets, but prediction intervals are not used for extrapolation beyond the previous data's experimentally controlled parameters.[8]

Fuzzy logic

edit

Fuzzy logic is used to handle decision-making in a non-binary fashion for artificial intelligence, medical decisions, and other fields. In general, it takes inputs, maps them through fuzzy inference systems, and produces an output decision. This process involves fuzzification, fuzzy logic rule evaluation, and defuzzification. When looking at fuzzy logic rule evaluation, membership functions convert our non-binary input information into tangible variables. These membership functions are essential to predict the uncertainty of the system.

One-sided vs. two-sided

edit
?
Differentiating between two-sided and one-sided intervals on a standard normal distribution curve.

Two-sided intervals estimate a parameter of interest, Θ, with a level of confidence, γ, using a lower (?) and upper bound (?). Examples may include estimating the average height of males in a geographic region or lengths of a particular desk made by a manufacturer. These cases tend to estimate the central value of a parameter. Typically, this is presented in a form similar to the equation below.

?

Differentiating from the two-sided interval, the one-sided interval utilizes a level of confidence, γ, to construct a minimum or maximum bound which predicts the parameter of interest to γ*100% probability. Typically, a one-sided interval is required when the estimate's minimum or maximum bound is not of interest. When concerned about the minimum predicted value of Θ, one is no longer required to find an upper bounds of the estimate, leading to a form reduced form of the two-sided.

?

As a result of removing the upper bound and maintaining the confidence, the lower-bound (?) will increase. Likewise, when concerned with finding only an upper bound of a parameter's estimate, the upper bound will decrease. A one-sided interval is a commonly found in material production's quality assurance, where an expected value of a material's strength, Θ, must be above a certain minimum value (?) with some confidence (100γ%). In this case, the manufacturer is not concerned with producing a product that is too strong, there is no upper-bound (?).

Discussion

edit

When determining the statistical significance of a parameter, it is best to understand the data and its collection methods. Before collecting data, an experiment should be planned such that the sampling error is statistical variability (a random error), as opposed to a statistical bias (a systematic error).[9] After experimenting, a typical first step in creating interval estimates is exploratory analysis plotting using various graphical methods. From this, one can determine the distribution of samples from the data set. Producing interval boundaries with incorrect assumptions based on distribution makes a prediction faulty.[10]

When interval estimates are reported, they should have a commonly held interpretation within and beyond the scientific community. Interval estimates derived from fuzzy logic have much more application-specific meanings.

In commonly occurring situations there should be sets of standard procedures that can be used, subject to the checking and validity of any required assumptions. This applies for both confidence intervals and credible intervals. However, in more novel situations there should be guidance on how interval estimates can be formulated. In this regard confidence intervals and credible intervals have a similar standing but there two differences. First, credible intervals can readily deal with prior information, while confidence intervals cannot. Secondly, confidence intervals are more flexible and can be used practically in more situations than credible intervals: one area where credible intervals suffer in comparison is in dealing with non-parametric models.

There should be ways of testing the performance of interval estimation procedures. This arises because many such procedures involve approximations of various kinds and there is a need to check that the actual performance of a procedure is close to what is claimed. The use of stochastic simulations makes this is straightforward in the case of confidence intervals, but it is somewhat more problematic for credible intervals where prior information needs to be taken properly into account. Checking of credible intervals can be done for situations representing no-prior-information but the check involves checking the long-run frequency properties of the procedures.

Severini (1993) discusses conditions under which credible intervals and confidence intervals will produce similar results, and also discusses both the coverage probabilities of credible intervals and the posterior probabilities associated with confidence intervals.[11]

In decision theory, which is a common approach to and justification for Bayesian statistics, interval estimation is not of direct interest. The outcome is a decision, not an interval estimate, and thus Bayesian decision theorists use a Bayes action: they minimize expected loss of a loss function with respect to the entire posterior distribution, not a specific interval.

Applications

edit

Applications of confidence intervals are used to solve a variety of problems dealing with uncertainty. Katz (1975) proposes various challenges and benefits for utilizing interval estimates in legal proceedings.[12] For use in medical research, Altmen (1990) discusses the use of confidence intervals and guidelines towards using them.[13] In manufacturing, it is also common to find interval estimates estimating a product life, or to evaluate the tolerances of a product. Meeker and Escobar (1998) present methods to analyze reliability data under parametric and nonparametric estimation, including the prediction of future, random variables (prediction intervals).[14]

See also

edit

References

edit
  1. ^ Neyman, J. (1937). "Outline of a Theory of Statistical Estimation Based on the Classical Theory of Probability". Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 236 (767). The Royal Society: 333–380. Bibcode:1937RSPTA.236..333N. doi:10.1098/rsta.1937.0005. ISSN?0080-4614. JSTOR?91337. S2CID?19584450. Retrieved 2025-08-14.
  2. ^ Severini, Thomas A. (1991). "On the Relationship between Bayesian and Non-Bayesian Interval Estimates". Journal of the Royal Statistical Society, Series B (Methodological). 53 (3). Wiley: 611–618. doi:10.1111/j.2517-6161.1991.tb01849.x. ISSN?0035-9246.
  3. ^ a b Meeker, William Q.; Hahn, Gerald J.; Escobar, Luis A. (2025-08-14). Statistical Intervals: A Guide for Practitioners and Researchers. Wiley Series in Probability and Statistics (1?ed.). Wiley. doi:10.1002/9781118594841. ISBN?978-0-471-68717-7.
  4. ^ Hespanhol, Luiz; Vallio, Caio Sain; Costa, Lucíola Menezes; Saragiotto, Bruno T (2025-08-14). "Understanding and interpreting confidence and credible intervals around effect estimates". Brazilian Journal of Physical Therapy. 23 (4): 290–301. doi:10.1016/j.bjpt.2018.12.006. ISSN?1413-3555. PMC?6630113. PMID?30638956.
  5. ^ Lee, Peter M. (2012). Bayesian statistics: an introduction (4. ed., 1. publ?ed.). Chichester: Wiley. ISBN?978-1-118-33257-3.
  6. ^ Hannig, Jan; Iyer, Hari; Lai, Randy C. S.; Lee, Thomas C. M. (2025-08-14). "Generalized Fiducial Inference: A Review and New Results". Journal of the American Statistical Association. 111 (515): 1346–1361. doi:10.1080/01621459.2016.1165102. ISSN?0162-1459.
  7. ^ Howe, W. G. (June 1969). "Two-Sided Tolerance Limits for Normal Populations, Some Improvements". Journal of the American Statistical Association. 64 (326): 610. doi:10.2307/2283644. ISSN?0162-1459.
  8. ^ Vardeman, Stephen B. (1992). "What about the Other Intervals?". The American Statistician. 46 (3): 193–197. doi:10.2307/2685212. ISSN?0003-1305.
  9. ^ Hahn, Gerald J.; Meeker, William Q. (1993). "Assumptions for Statistical Inference". The American Statistician. 47 (1): 1–11. doi:10.2307/2684774. ISSN?0003-1305.
  10. ^ Hahn, Gerald J.; Doganaksoy, Necip; Meeker, William Q. (2025-08-14). "Statistical Intervals, Not Statistical Significance". Significance. 16 (4): 20–22. doi:10.1111/j.1740-9713.2019.01298.x. ISSN?1740-9705.
  11. ^ Severini, Thomas A. (1993). "Bayesian Interval Estimates which are also Confidence Intervals". Journal of the Royal Statistical Society. Series B (Methodological). 55 (2): 533–540. ISSN?0035-9246.
  12. ^ Katz, Leo (1975). "Presentation of a Confidence Interval Estimate as Evidence in a Legal Proceeding". The American Statistician. 29 (4): 138–142. doi:10.2307/2683480. ISSN?0003-1305.
  13. ^ Altman, Douglas G., ed. (2011). Statistics with confidence: confidence intervals and statistical guidelines; [includes disk] (2. ed., [Nachdr.]?ed.). London: BMJ Books. ISBN?978-0-7279-1375-3.
  14. ^ Meeker, William Q.; Escobar, Luis A. (1998). Statistical methods for reliability data. Wiley series in probability and statistics Applied probability and statistics section. New York Weinheim: Wiley. ISBN?978-0-471-14328-4.

Bibliography

edit
  • Kendall, M.G. and Stuart, A. (1973). The Advanced Theory of Statistics. Vol 2: Inference and Relationship (3rd Edition). Griffin, London.
In the above Chapter 20 covers confidence intervals, while Chapter 21 covers fiducial intervals and Bayesian intervals and has discussion comparing the three approaches. Note that this work predates modern computationally intensive methodologies. In addition, Chapter 21 discusses the Behrens–Fisher problem.
  • Meeker, W.Q., Hahn, G.J. and Escobar, L.A. (2017). Statistical Intervals: A Guide for Practitioners and Researchers (2nd Edition). John Wiley & Sons.
edit
一动就出汗吃什么药 a型rhd阳性是什么意思 新陈代谢是什么意思 具象是什么意思 人为什么要吃肉
冰袋里面装的是什么 肺结节是什么病严重吗 水浒传主要讲了什么 什么是扁平疣 了不起是什么意思
眼皮重是什么原因 小孩头疼吃什么药 羞耻是什么意思 三门代表什么生肖 口五行属什么
当兵有什么好处 赘肉是什么意思 阑尾炎输液输什么药 急性结膜炎用什么眼药水 地藏菩萨是管什么的
咽喉炎用什么药hcv7jop4ns7r.cn 龟头有红点用什么药hcv8jop5ns0r.cn bmi是什么意思啊hcv8jop8ns2r.cn 嗦是什么意思hcv8jop6ns0r.cn 宅心仁厚是什么意思hebeidezhi.com
戾气太重是什么意思wzqsfys.com 螨虫长什么样hcv8jop0ns5r.cn 淋巴细胞数偏高是什么意思hcv8jop1ns7r.cn 脚踏一星是什么命wuhaiwuya.com 菟丝子是什么hcv7jop5ns4r.cn
治疗宫颈炎用什么药好得快hcv8jop7ns1r.cn 吃葡萄干对身体有什么好处hcv8jop0ns7r.cn 福兮祸兮是什么意思hcv8jop9ns4r.cn 水云间什么意思hcv9jop6ns7r.cn 1970属什么生肖hcv9jop0ns1r.cn
三七粉有什么作用hcv9jop8ns1r.cn dbp是什么意思huizhijixie.com eric是什么意思hcv8jop0ns7r.cn 左侧肚脐旁边疼是什么原因hcv9jop6ns1r.cn 女人腰上有痣代表什么hcv8jop8ns6r.cn
百度