梦游为什么不能叫醒| 平板电脑与笔记本电脑有什么区别| elephant什么意思| nfc果汁是什么意思| ppm是什么| 1级高血压是什么意思| 刘备字什么| 楼房风水主要看什么| 生是什么意思| 什么鱼刺少好吃| noah是什么牌子| 什么什么多腔| 草字头有什么字| 王为念和王芳什么关系| 浅黄色是什么颜色| 过敏性紫癜不能吃什么| 减肥适合吃什么水果| 兼得是什么意思| 出人头地是什么意思| 李约瑟难题是什么| 陌上花是什么意思| 为什么不建议打水光针| 女子与小人难养也什么意思| 低压高吃什么中成药| 黄风怪是什么动物| 叹气是什么意思| 梦见妯娌是什么意思| 上海市委书记什么级别| 屈膝是什么意思| 腰间盘突出是什么症状| 左胸上方隐痛什么原因| 氧化性是什么意思| 廉航是什么意思| 态度是什么意思| 梦到认识的人死了是什么意思| 吃什么对脾胃有好处| biemlfdlkk是什么牌子| 心脏舒张功能减低是什么意思| 百鸟归巢什么意思| 葡萄膜炎是什么原因引起的| 痉挛吃什么药| 女生为什么会痛经| colorful是什么牌子| 什么是压缩性骨折| 人参适合什么人吃| 金鱼藻是什么植物| 归元寺求什么最灵验| 什么是工作日| 康乃馨适合送什么人| 不伤肝的他汀类药是什么| 数字7的风水含义是什么| 1948年属什么| 阴柔是什么意思| 超现实主义是什么意思| 前卫是什么意思| 为什么吃肉多反而瘦了| 腰疼吃什么药最有效| 乳糖不耐受是什么意思| 驰字五行属什么| gr是什么| 三岁宝宝喝什么奶粉比较好| 子宫囊肿是什么原因引起的| 药物制剂是干什么的| 姨妈期吃什么水果| 骨扫描是检查什么| 脾虚吃什么水果| 北京大学什么专业最好| 房性心律是什么意思| 双肺纹理增多什么意思| 施华洛世奇什么档次| 切除子宫有什么危害| 红加绿等于什么颜色| 孕育是什么意思| 今年是什么年庚| 结婚60年是什么婚| 手上长斑点是什么原因| 月经是什么| 女人腰疼是什么妇科病| 火腿肠是什么做的| 凉拌什么菜好吃| 山东有什么特产| 1953年是什么年| 梦见自己扫地是什么意思| 什么是房颤| 什么的知了| 脚没力气是什么原因| 王景读什么| 当归和党参有什么区别| 打嗝医学术语是什么| 孕吐吃什么可以缓解| prc什么意思| 昱五行属性是什么| 猫的胡须有什么用处| 牛跟什么生肖相合| 宫腔镜是什么| 左胸隐隐作痛是什么原因| 木危读什么| 洁颜蜜是什么| 身无什么| 2026属什么生肖| 10.5号是什么星座| 番茄什么时候种植| 月经吃什么| 喜欢出汗是什么原因| 酒酿蛋什么时候吃效果最好| 眼睛干涩发痒用什么药| 美女如云什么意思| 宝宝干呕是什么原因| 什么食物热量高| 凌波仙子是什么花| 韧带是什么| 菟丝子是什么| 孕期长痘痘是什么原因| 吃黄瓜有什么好处和坏处| 左卵巢囊性结构是什么意思| 唐僧的真名叫什么| 化疗与放疗有什么区别| 刮宫和清宫有什么区别| 9d是什么意思| 嘴角开裂是什么原因| 晚上睡觉口干是什么原因| 舌苔厚黄是怎么回事吃什么药| 鼻涕臭是什么原因| 何妨是什么意思| 接骨木莓是什么| 汗手适合盘什么手串| 移动硬盘什么牌子好| 吃四方是什么生肖| 为什么会紫外线过敏| 无氧运动是什么| 藿香正气水什么时候喝| 什么地睡觉| 很难怀孕是什么原因| 梦见前女友是什么预兆| 工勤人员是什么意思| 猪狗不如是什么意思| 人间正道是沧桑是什么意思| 瞳孔缩小意味着什么| 聪明的人有什么特征| 地中海贫血携带者是什么意思| 夫妻肺片是什么肉| 438是什么意思| 梦见自己的车丢了是什么意思| 氨水是什么| 大姨夫是什么| 头发里长痣代表什么| 绚丽夺目的意思是什么| 长沙有什么大学| pe什么材质| 晚上8点到9点是什么时辰| 内疚是什么意思| 和谐的意思是什么| 脂蛋白是什么意思| 尾牙宴是什么意思| 高见是什么意思| 大象的天敌是什么动物| 头上汗多是什么原因| 收割是什么意思| 什么虎不吃人| 解语花是什么意思| 顶臀径是什么意思| 生理盐水是什么水| 尿毒症小便什么颜色| 女孩叫锦什么好听| 什么人容易得圆锥角膜| 右手小拇指发麻是什么原因| 橙色加蓝色是什么颜色| 水蛭是什么| 香干是什么| 白花花的什么| 黄花是什么花| 赞聊是什么意思| 生辰八字五行缺什么| 探望产妇带什么礼物好| 蓝色妖姬是什么意思| 孕妇喝纯牛奶对胎儿有什么好处| pet什么意思| 能量守恒是什么意思| 人瘦是什么原因造成的| 四爱是什么意思| 烁字五行属什么| 孕妇牙龈出血是什么原因| 6月13是什么星座| 女为悦己者容是什么意思| lv属于什么档次| 40岁男人学什么乐器好| 车挂件挂什么保平安好| 时柱代表什么| 阴唇肥大有什么影响| 舌头紫红色是什么原因| 用神是什么意思| 舌头发涩是什么原因造成的| 大健康是什么意思| 腺癌是什么癌| 破太岁是什么意思| 中元节不能穿什么衣服| 小熊衣服叫什么牌子| 过敏性紫癜什么症状| 肠胃炎不能吃什么| 吃杏仁有什么好处| 局座是什么梗| 汁男什么意思| 什么是潜规则| 雅痞是什么意思| 儿童查微量元素挂什么科| 日本牛郎是干什么的| wb是什么意思| 随喜功德是什么意思| 娟五行属什么| 梦见自己拉粑粑是什么意思| 心率低是什么原因| 经常放响屁是什么原因| 撑台脚是什么意思| 反流性食管炎吃什么中成药最好| 橙字五行属什么| 静夜思是什么季节| 什么细节能感动摩羯男| 打嗝是什么引起的| 内能与什么因素有关| 正高是什么级别| 扁头适合什么发型| 梅毒是什么| 胸前出汗多是什么原因| bull是什么意思| 济公叫什么名字| 月经量太少是什么原因引起的| 子时是什么时候| 世界上最贵的烟是什么烟| 转卖是什么意思| 1958年属什么生肖| 秋黄瓜什么时候种| 晚黄瓜什么时候种| 贫血不能吃什么| 月经量多是什么原因| 血栓挂什么科| 尿酸高喝什么茶| 老公梦见老婆出轨是什么意思| lamer是什么牌子| 什么叫低级别上皮内瘤变| 出局是什么意思| 喉咙有痰吐出来有血是什么原因| gm是什么意思| 刚开始怀孕会有什么症状| 肚子咕咕叫吃什么药| 兔属什么五行| 北极熊的毛是什么颜色的| 湿疹是因为什么原因引起的| 血气是什么意思| 为什么海螺里有大海的声音| 烤肉用什么油| 北肖指什么生肖| 肾囊肿是什么原因引起的| 脑供血不足做什么检查| 一九七八年属什么生肖| 什么日什么秋| 流汗太多对身体有什么危害| 热狗为什么叫热狗| 间接喉镜检查能检查出什么| 如痴如醉是什么意思| 霜花店讲了什么故事| 十一月九号是什么星座| 喝竹叶水有什么好处| 胸闷气短吃什么特效药| 麝香保心丸治什么病| 百度

13岁女孩和爷爷挖野菜走丢 幸遇好心人及时报警

百度 不过大众的家族式外观设计无疑已经被消费者们所认可。

In statistics, data can have any of various types. Statistical data types include categorical (e.g. country), directional (angles or directions, e.g. wind measurements), count (a whole number of events), or real intervals (e.g. measures of temperature).

The data type is a fundamental concept in statistics and controls what sorts of probability distributions can logically be used to describe the variable, the permissible operations on the variable, the type of regression analysis used to predict the variable, etc. The concept of data type is similar to the concept of level of measurement, but more specific. For example, count data requires a different distribution (e.g. a Poisson distribution or binomial distribution) than non-negative real-valued data require, but both fall under the same level of measurement (a ratio scale).

Various attempts have been made to produce a taxonomy of levels of measurement. The psychophysicist Stanley Smith Stevens defined nominal, ordinal, interval, and ratio scales. Nominal measurements do not have meaningful rank order among values, and permit any one-to-one transformation. Ordinal measurements have imprecise differences between consecutive values, but have a meaningful order to those values, and permit any order-preserving transformation. Interval measurements have meaningful distances between measurements defined, but the zero value is arbitrary (as in the case with longitude and temperature measurements in degree Celsius or degree Fahrenheit), and permit any linear transformation. Ratio measurements have both a meaningful zero value and the distances between different measurements defined, and permit any rescaling transformation.

Because variables conforming only to nominal or ordinal measurements cannot be reasonably measured numerically, sometimes they are grouped together as categorical variables, whereas ratio and interval measurements are grouped together as quantitative variables, which can be either discrete or continuous, due to their numerical nature. Such distinctions can often be loosely correlated with data type in computer science, in that dichotomous categorical variables may be represented with the Boolean data type, polytomous categorical variables with arbitrarily assigned integers in the integral data type, and continuous variables with the real data type involving floating point computation. But the mapping of computer science data types to statistical data types depends on which categorization of the latter is being implemented.

Other categorizations have been proposed. For example, Mosteller and Tukey (1977)[1] distinguished grades, ranks, counted fractions, counts, amounts, and balances. Nelder (1990)[2] described continuous counts, continuous ratios, count ratios, and categorical modes of data. See also Chrisman (1998),[3] van den Berg (1991).[4]

The issue of whether or not it is appropriate to apply different kinds of statistical methods to data obtained from different kinds of measurement procedures is complicated by issues concerning the transformation of variables and the precise interpretation of research questions. "The relationship between the data and what they describe merely reflects the fact that certain kinds of statistical statements may have truth values which are not invariant under some transformations. Whether or not a transformation is sensible to contemplate depends on the question one is trying to answer" (Hand, 2004, p.?82).[5]

Simple data types

edit

The following table classifies the various simple data types, associated distributions, permissible operations, etc. Regardless of the logical possible values, all of these data types are generally coded using real numbers, because the theory of random variables often explicitly assumes that they hold real numbers.

Data Type
Possible values Example usage
Level of
measurement
Common

Distributions

Scale of
relative
differences
Permissible statistics Common model
0, 1 (arbitrary labels) binary outcome ("yes/no", "true/false", "success/failure", etc.) Bernoulli mode, chi-squared logistic, probit
"name1", "name2", "name3", ... "nameK" (arbitrary labels) categorical outcome with names or places like "Rome", "Amsterdam", "Madrid", "London", "Washington" (specific blood type, political party, word, etc.) categorical multinomial logit, multinomial probit
ordering categories or integer or real number (arbitrary scale) Ordering adverbs like "Small", "Medium", "Large", relative score, significant only for creating a ranking categorical
relative
comparison
ordinal regression (ordered logit, ordered probit)
0, 1, ..., N number of successes (e.g. yes votes) out of N possible binomial, beta-binomial
additive
mean, median, mode, standard deviation, correlation binomial regression (logistic, probit)
nonnegative integers (0, 1, ...) number of items (telephone calls, people, molecules, births, deaths, etc.) in given interval/area/volume Poisson, negative binomial
multiplicative
All statistics permitted for interval scales plus the following: geometric mean, harmonic mean, coefficient of variation Poisson, negative binomial regression
real-valued
additive
real number temperature in degree Celsius or degree Fahrenheit, relative distance, location parameter, etc. (or approximately, anything not varying over a large scale) normal, etc. (usually symmetric about the mean)
additive
mean, median, mode, standard deviation, correlation standard linear regression
real-valued
multiplicative
positive real number temperature in kelvin, price, income, size, scale parameter, etc. (especially when varying over a large scale) log-normal, gamma, exponential, etc. (usually a skewed distribution)
multiplicative
All statistics permitted for interval scales plus the following: geometric mean, harmonic mean, coefficient of variation generalized linear model with logarithmic link

Multivariate data types

edit

Data that cannot be described using a single number are often shoehorned into random vectors of real-valued random variables, although there is an increasing tendency to treat them on their own. Some examples:

  • Random vectors. The individual elements may or may not be correlated. Examples of distributions used to describe correlated random vectors are the multivariate normal distribution and multivariate t-distribution. In general, there may be arbitrary correlations between any elements and any others; however, this often becomes unmanageable above a certain size, requiring further restrictions on the correlated elements.
  • Random matrices. Random matrices can be laid out linearly and treated as random vectors; however, this may not be an efficient way of representing the correlations between different elements. Some probability distributions are specifically designed for random matrices, e.g. the matrix normal distribution and Wishart distribution.
  • Random sequences. These are sometimes considered to be the same as random vectors, but in other cases the term is applied specifically to cases where each random variable is only correlated with nearby variables (as in a Markov model). This is a particular case of a Bayes network and often used for very long sequences, e.g. gene sequences or lengthy text documents. A number of models are specifically designed for such sequences, e.g. hidden Markov models.
  • Random processes. These are similar to random sequences, but where the length of the sequence is indefinite or infinite and the elements in the sequence are processed one-by-one. This is often used for data that can be described as a time series, e.g. the price of a stock on successive days. Random processes are also used to model values that vary continuously (e.g. the temperature at successive moments in time), rather than at discrete intervals.
  • Bayes networks. These correspond to aggregates of random variables described using graphical models, where individual random variables are linked in a graph structure with conditional distributions relating variables to nearby variables.
  • Random fields. These represent the extension of random processes to multiple dimensions, and are common in physics, where they are used in statistical mechanics to describe properties such as force or electric field that can vary continuously over three dimensions (or four dimensions, when time is included).

These concepts originate in various scientific fields and frequently overlap in usage. As a result, it is very often the case that multiple concepts could potentially be applied to the same problem.

Comparison to programming data types

edit

Most data types in statistics have comparable types in computer programming, and vice versa, as shown in the following table:

Statistics Programming
real-valued (interval scale) floating-point
real-valued (ratio scale)
count data (usually non-negative) integer
binary data Boolean
categorical data enumerated type
random vector list or array
random matrix two-dimensional array
random tree tree

References

edit
  1. ^ Mosteller, F.; Tukey, J.W. (1977). Data analysis and regression. Addison-Wesley. ISBN?978-0-201-04854-4.
  2. ^ Nelder, J.A. (1990). "The knowledge needed to computerise the analysis and interpretation of statistical information". Expert systems and artificial intelligence: the need for information about data. London: Library Association. OCLC?27042489.
  3. ^ Chrisman, Nicholas R. (1998). "Rethinking Levels of Measurement for Cartography". Cartography and Geographic Information Science. 25 (4): 231–242. Bibcode:1998CGISy..25..231C. doi:10.1559/152304098782383043.
  4. ^ van den Berg, G. (1991). Choosing an analysis method. Leiden: DSWO Press. ISBN?978-90-6695-062-7.
  5. ^ Hand, D.J. (2004). Measurement theory and practice: The world through quantification. Wiley. p.?82. ISBN?978-0-470-68567-9.
产妇吃什么鸡最好 太子是什么生肖 左腿麻木是什么征兆 备孕什么意思 抗糖是什么意思
羿字五行属什么 鼻子出血挂什么科 耳石症是什么原因 王维字什么 黄精长什么样
ms.是什么意思 北极有什么动物 发烧白细胞高是什么原因 当归不能和什么一起吃 考妣是什么意思
三月一日是什么星座 崩大碗配什么煲汤最好 心肌酶是查什么的 余数是什么 肝内多发低密度影是什么意思
尿液白细胞高是什么原因hcv8jop7ns6r.cn 肋间神经炎吃什么药hcv7jop5ns2r.cn 杆鱼是什么鱼hcv8jop8ns0r.cn 耳什么目明hcv8jop0ns8r.cn 为什么总是做噩梦hcv7jop9ns0r.cn
头晕做什么检查最准确hcv9jop5ns1r.cn 午时左眼跳是什么兆头tiangongnft.com 正方形纸能折什么hcv7jop6ns1r.cn 烧心是什么意思hcv7jop9ns3r.cn 妇科病是什么hcv8jop9ns7r.cn
肚子胀气是什么原因引起的hcv8jop5ns0r.cn 浪子回头金不换是什么意思mmeoe.com 六甲什么意思hcv9jop3ns4r.cn 灬是什么意思hcv8jop0ns7r.cn 惊厥是什么原因引起的hcv8jop3ns1r.cn
什么情况下需要做心脏造影hcv8jop3ns4r.cn 肾虚吃什么食物好hcv8jop0ns3r.cn 龙凤呈祥是什么意思hcv8jop5ns6r.cn 白头发吃什么维生素能变黑hcv8jop2ns9r.cn 智商什么意思hcv7jop6ns0r.cn
百度