脚气用什么药最好| 手指麻是什么原因| 万人迷是什么意思| 巴字加一笔是什么字| 丝状疣长什么样| 男性尿道痒吃什么药| 多巴胺什么意思| 宫颈癌早期什么症状| 办身份证要穿什么衣服| 告诫是什么意思| 畸胎瘤是什么病严重吗| 喝茶对人体有什么好处| 除湿气喝什么茶| 什么属相不能带狗牙| 什么环境唱什么歌原唱| 瞌睡多是什么原因| 疲惫是什么意思| 脖子后面正中间有痣代表什么| 今日什么冲什么生肖| 荷字五行属什么| 鸽子夏天喝什么水好| 生蚝补什么| 肺部真菌感染吃什么药| 孕妇缺营养吃什么补| 为什么怀孕前三个月不能说| 甲状腺结节不能吃什么食物| 瑕疵什么意思| 昆明有什么好玩的| 产妇月子里可以吃什么水果| 咳嗽吃什么好得快| mtd是什么意思| 包馄饨用猪肉什么部位| 即什么意思| 气山读什么| 垣字五行属什么| 小孩子隔三差五流鼻血什么原因| 重阳节应该吃什么| 奇可以加什么偏旁| 搬家送什么水果| 髓母细胞瘤是什么病| 补休是什么意思| 孕妇血糖高对胎儿有什么影响| 流加金念什么| 少许纤维灶是什么意思| 嘴唇轻微发麻什么病兆| 提前来大姨妈是什么原因| 吾矛之利的利什么意思| 东吴在现在什么地方| 纵隔子宫是什么意思| 二级警监是什么级别| 喉咙发炎吃什么水果好| tommyhilfiger什么牌子| 阳虚有什么症状| 总口渴是什么原因| 肾结石吃什么食物好| 看脑袋挂什么科| 维生素c什么时候吃最好| 呆若木鸡的意思是什么| 鲍温病是什么病| 前列腺炎不治疗有什么后果| 不以为然什么意思| 一命呜呼是什么意思| 腹主动脉壁钙化是什么意思| 泌乳素偏高是什么原因| 骨头受伤了吃什么恢复的快| 属马的人佩戴什么招财| yp是什么意思| 青光眼什么症状| 夸瓜读什么| 吃什么减肥效果最好最快| 心跳快吃什么药| 多吃丝瓜有什么好处和坏处| 什么积木| 一天当中什么时候血压最高| 睡觉总醒是什么原因| 医生为为什么建议不吃生菜| 睡眠不足会引起什么症状| 火把节在每年农历的什么时间举行| 黄芪和什么搭配不上火| acr是什么意思| 爱迪生发明什么| 操刀是什么意思| 水中毒是什么| 内分泌科看什么病| 农历9月28日是什么星座| 沙发是什么意思| 为什么有的人特别招蚊子| 双眸是什么意思| 相中是什么意思| 什么是幽门螺旋杆菌| 醋泡黑豆有什么功效| 杰字属于五行属什么| 脑部磁共振检查什么| 石蛋是什么| 听什么歌写作业快| cvt是什么意思| 什么水果对肠胃好| 尿管痒是什么原因| 菠萝炒什么好吃| 宝宝发烧手脚冰凉是什么原因| 清宫后需要注意什么| 东星斑为什么这么贵| prada是什么品牌| 皮肤病是什么原因造成的| 辛弃疾字什么| 喝菊花茶有什么好处| 病案首页是什么| 卡地亚手表什么档次| 平板支撑是什么| 什么是飞秒手术| 0.01是什么意思| 金银花为什么叫忍冬| 失眠是什么原因导致的| 中图分类号是什么| 荼什么意思| 普陀山求什么最灵验| 卯时五行属什么| 月指什么生肖| 月经期间适合做什么运动| 颈动脉斑块吃什么药| 休学需要什么条件| 布五行属什么| 越什么越什么| 嘴唇发乌是什么原因| 免疫力低吃什么好| 查肝功能能查出什么病| 孕吐反应什么时候开始| 心脏窦性心律什么意思| 感冒引起的咳嗽吃什么药| 性格内向的人适合做什么工作| 汞中毒是什么症状| 雌二醇凝胶有什么作用| 假释是什么意思| 血压高有什么好办法| 离殇是什么意思| 慧外秀中什么意思| 4月30号是什么星座| 芹菜煮水喝有什么功效| 孕妇梦见摘桃子是什么意思| pick是什么意思| mmf是什么药| 太平猴魁是什么茶| 眼睛疲劳干涩用什么眼药水| 家里狗死了预示着什么| 打劫是什么意思| 梦见自己在飞是什么征兆| oz是什么意思| 唯女子与小人难养也是什么意思| 走肾不走心什么意思| 遗传物质的载体是什么| 灵魂伴侣是指什么意思| 什么的黄瓜| 子宫内膜增厚是什么原因引起的| 胸痛什么原因| 耽美剧是什么意思| 反胃想吐是什么原因| 自己开店做什么赚钱| 酌情是什么意思| 蛋花样大便是什么原因| 月经量少吃什么药调理| 中秋节有什么活动| 鳡鱼是什么鱼| 炎性改变是什么意思| 丙球是什么| 秋葵是什么| 淋巴结节挂什么科| 荸荠读音是什么| 肠胃不好吃什么水果好| 孕妇吃什么水果好对胎儿好| hpv51阳性是什么意思| 梦到甘蔗代表什么预兆| oo什么意思| 甲状旁腺是什么意思| 三个目念什么| 椎管狭窄吃什么药| 12月13日是什么日子| 分别心是什么意思| 木石念什么| 阴囊瘙痒挂什么科室| 肝胆相照什么意思| 肌肉萎缩什么症状| 诊疗是什么意思| 皮脂腺囊肿吃什么消炎药| a货翡翠是什么意思| 结石有什么症状| 秦朝为什么那么快灭亡| 肝肾挂什么科| as材质是什么材料| 过敏挂什么科室| 什么的童年| 教学相长是什么意思| 备孕吃什么最容易怀孕| 男人太瘦吃什么可以长胖| 豆工念什么| 灰色五行属什么| 吃牛油果有什么好处和坏处| 白蛋白偏高是什么意思| 大脚趾发黑是什么原因| 摆渡人是什么意思| 蛇什么时候出来活动| 心悸吃什么中成药| 男人勃不起是什么原因造成的| 南冠指的是什么| 蒜苗炒什么好吃| 头皮癣用什么药膏最好| 烊什么意思| 怎么判断脸上是什么斑| 克加寸念什么| 什么东西补铁效果好而且最快| 阴道炎用什么洗| 1991年属羊的是什么命| 结婚前要准备什么| 水为什么是绿色的| 腱鞘炎用什么药能治好| 清洁度三度什么意思| 抽筋吃什么药见效快| 甲状腺是什么引起的| 属蛇的和什么属相最配| 口干口苦吃什么中成药| 脑震荡后眩晕吃什么药| 2023年是什么生肖年| 梦见死人是什么意思| 藏医最擅长治什么病| d什么意思| 百合花是什么颜色的| 刻薄是什么意思| 榴莲坏了是什么味道| 牙齿发酸是什么病征兆| 黄色裤子配什么上衣好看| 糖类抗原ca125偏高是什么原因| 头出汗多至头发湿透是什么原因| 心脏长在什么位置| 六月六日是什么节日| 羽毛球拍什么牌子好| 露出什么意思| 言外之意什么意思| 赵构为什么杀岳飞| 胃炎吃什么药效果好| 薄如蝉翼是什么意思| 吃什么能生精和提高精子质量| 看不上是什么意思| 龙抬头是什么意思| 有什么有什么| 祥林嫂是什么样的人| 梅西踢什么位置| 2月19日是什么星座| 生肖鸡和什么生肖最配| 紧张性头痛吃什么药| 腰疼贴什么膏药| 失眠吃什么药效果最好| 王八是什么字| 血脂高胆固醇高吃什么好| 不想要孩子用什么办法最好| 什么叫缘分| 丁丁历险记的狗是什么品种| 牙痛上火吃什么药| 1月24号什么星座| 男占258女占369什么意思| 上课什么坐姿可以瘦腿| 宫商角徵羽是什么意思| 什么全什么美| 中性粒细胞是指什么| 爱是什么感觉| 断崖式是什么意思| 百度

国际油价被推高 国内油价今日或创年内最大涨

百度   未来要有一个新的全球社会经济的模式,这种模式能够帮助我们应对保护主义,帮助我们进一步开放。

Semiconductor device modeling creates models for the behavior of semiconductor devices based on fundamental physics, such as the doping profiles of the devices. It may also include the creation of compact models (such as the well known SPICE transistor models), which try to capture the electrical behavior of such devices but do not generally derive them from the underlying physics. Normally it starts from the output of a semiconductor process simulation.

Hierarchy of technology CAD tools building from the process level to circuits. Left side icons show typical manufacturing issues; right side icons reflect MOS scaling results based on technology CAD (TCAD). Credit: Prof. Robert Dutton in CRC Electronic Design Automation for IC Handbook, Vol II, Chapter 25, by permission.

Introduction

edit
?
Schematic of two stages of CMOS inverter, showing input and output voltage-time plots. Ion and Ioff (along with IDG, ISD and IDB components) indicate technologically controlled factors. Credit: Prof. Robert Dutton in CRC Electronic Design Automation for IC Handbook, Vol II, Chapter 25, by permission.

The figure to the right provides a simplified conceptual view of "the big picture". This figure shows two inverter stages and the resulting input-output voltage-time plot of the circuit. From the digital systems point of view the key parameters of interest are: timing delays, switching power, leakage current and cross-coupling (crosstalk) with other blocks. The voltage levels and transition speed are also of concern.

The figure also shows schematically the importance of Ion versus Ioff, which in turn is related to drive-current (and mobility) for the "on" device and several leakage paths for the "off" devices. Not shown explicitly in the figure are the capacitances—both intrinsic and parasitic—that affect dynamic performance.

The power scaling which is now a major driving force in the industry is reflected in the simplified equation shown in the figure—critical parameters are capacitance, power supply and clocking frequency. Key parameters that relate device behavior to system performance include the threshold voltage, driving current and subthreshold characteristics.

It is the confluence of system performance issues with the underlying technology and device design variables that results in the ongoing scaling laws that we now codify as Moore's law.

Device modeling

edit

The physics and modeling of devices in integrated circuits is dominated by MOS and bipolar transistor modeling. However, other devices are important, such as memory devices, that have rather different modeling requirements. There are of course also issues of reliability engineering—for example, electro-static discharge (ESD) protection circuits and devices—where substrate and parasitic devices are of pivotal importance. These effects and modeling are not considered by most device modeling programs; the interested reader is referred to several excellent monographs in the area of ESD and I/O modeling.[1][2][3]

Physics driven vs. compact models

edit
?
An example of physics driven modeling of a MOSFET. The color contours indicate space resolved local density of states. Gate bias is varied in a nanowire MOSFET at drain bias Vd=0.6V. Notice the confined energy levels as they move with gate bias.

Physics driven device modeling is intended to be accurate, but it is not fast enough for higher level tools, including circuit simulators such as SPICE. Therefore, circuit simulators normally use more empirical models (often called compact models) that do not directly model the underlying physics. For example, inversion-layer mobility modeling, or the modeling of mobility and its dependence on physical parameters, ambient and operating conditions is an important topic both for TCAD (technology computer aided design) physical models and for circuit-level compact models. However, it is not accurately modeled from first principles, and so resort is taken to fitting experimental data. For mobility modeling at the physical level the electrical variables are the various scattering mechanisms, carrier densities, and local potentials and fields, including their technology and ambient dependencies.

By contrast, at the circuit-level, models parameterize the effects in terms of terminal voltages and empirical scattering parameters. The two representations can be compared, but it is unclear in many cases how the experimental data is to be interpreted in terms of more microscopic behavior.

History

edit

The evolution of technology computer-aided design (TCAD)—the synergistic combination of process, device and circuit simulation and modeling tools—finds its roots in bipolar technology, starting in the late 1960s, and the challenges of junction isolated, double-and triple-diffused transistors. These devices and technology were the basis of the first integrated circuits; nonetheless, many of the scaling issues and underlying physical effects are integral to IC design, even after four decades of IC development. With these early generations of IC, process variability and parametric yield were an issue—a theme that will reemerge as a controlling factor in future IC technology as well.

Process control issues—both for the intrinsic devices and all the associated parasitics—presented formidable challenges and mandated the development of a range of advanced physical models for process and device simulation. Starting in the late 1960s and into the 1970s, the modeling approaches exploited were dominantly one- and two-dimensional simulators. While TCAD in these early generations showed exciting promise in addressing the physics-oriented challenges of bipolar technology, the superior scalability and power consumption of MOS technology revolutionized the IC industry. By the mid-1980s, CMOS became the dominant driver for integrated electronics. Nonetheless, these early TCAD developments[4][5] set the stage for their growth and broad deployment as an essential toolset that has leveraged technology development through the VLSI and ULSI eras which are now the mainstream.

IC development for more than a quarter-century has been dominated by the MOS technology. In the 1970s and 1980s NMOS was favored owing to speed and area advantages, coupled with technology limitations and concerns related to isolation, parasitic effects and process complexity. During that era of NMOS-dominated LSI and the emergence of VLSI, the fundamental scaling laws of MOS technology were codified and broadly applied.[6] It was also during this period that TCAD reached maturity in terms of realizing robust process modeling (primarily one-dimensional) which then became an integral technology design tool, used universally across the industry.[7] At the same time device simulation, dominantly two-dimensional owing to the nature of MOS devices, became the work-horse of technologists in the design and scaling of devices.[8][9] The transition from NMOS to CMOS technology resulted in the necessity of tightly coupled and fully 2D simulators for process and device simulations. This third generation of TCAD tools became critical to address the full complexity of twin-well CMOS technology (see Figure 3a), including issues of design rules and parasitic effects such as latchup.[10][11] An abbreviated perspective of this period, through the mid-1980s, is given in;[12] and from the point of view of how TCAD tools were used in the design process, see.[13]

See also

edit

References

edit
  1. ^ C. Duvvury and A. Amerasekera, ESD: a pervasive reliability concern for IC technologies?, Proc. IEEE, vol. 81, pp. 690–702, 1993.
  2. ^ A. Amerasekera and C. Duvvury, ESD in Silicon Integrated Circuits, Second Edition, New York, John Wiley & Sons, 2002. ISBN?0-471-49871-8
  3. ^ S. Dabral and T. J. Maloney, Basic ESD and I/O design, New York, John Wiley & Sons, 1998. ISBN?0-471-25359-6
  4. ^ H.J. DeMan and R. Mertens, SITCAP—A simulator for bipolar transistors for computer-aided circuit analysis programs[dead link], International Solid-State Circuits Conference (ISSCC), Technical Digest, pp. 104–5, February, 1973.
  5. ^ R.W. Dutton and D.A. Antoniadis, Process simulation for device design and control[dead link], International Solid-State Circuits Conference (ISSCC), Technical Digest, pp. 244–245, February, 1979
  6. ^ R.H. Dennard, F.H. Gaensslen, H.N. Yu, V.L. Rodeout, E. Bassous and A.R. LeBlanc, Design of ion-implanted MOSFETs with very small physical dimensions, IEEE Jour. Solid-State Circuits, vol. SC-9, pp.256–268, October, 1974.
  7. ^ R.W. Dutton and S.E. Hansen, Process modeling of integrated circuit device technology, Proceedings of the IEEE, vol. 69, no. 10, pp. 1305–1320, October, 1981.
  8. ^ P.E. Cottrell and E.M. Buturla, "Two-dimensional static and transient simulation of mobile carrier transport in a semiconductor," Proceedings NASECODE I (Numerical Analysis of Semiconductor Devices), pp. 31–64, Boole Press, 1979.
  9. ^ S. Selberherr, W. Fichtner, and H.W. Potzl, "Minimos – A program package to facilitate MOS device design and analysis," Proceedings NASECODE I (Numerical Analysis of Semiconductor Devices), pp. 275–79, Boole Press, 1979.
  10. ^ C.S. Rafferty, M.R. Pinto, and R.W. Dutton, Iterative methods in semiconductor device simulation, IEEE Trans. Elec. Dev., vol. ED-32, no.10, pp.2018–2027, October, 1985.
  11. ^ M.R. Pinto and R.W. Dutton, Accurate trigger condition analysis for CMOS latchup, IEEE Electron Device Letters, vol. EDL-6, no. 2, February, 1985.
  12. ^ R.W. Dutton, Modeling and simulation for VLSI, International Electron Devices Meeting (IEDM), Technical Digest, pp. 2–7, December, 1986.
  13. ^ K.M. Cham, S.-Y. Oh, D. Chin and J.L. Moll, Computer-Aided Design and VLSI Device Development, Kluwer Academic Publishers (KAP), 1986. ISBN?0-89838-204-1
  • Electronic Design Automation For Integrated Circuits Handbook, by Lavagno, Martin, and Scheffer, ISBN?0-8493-3096-3 A survey of the field of electronic design automation. This summary was derived (with permission) from Vol II, Chapter 25, Device Modeling—from physics to electrical parameter extraction, by Robert W. Dutton, Chang-Hoon Choi and Edwin C. Kan.
  • R.W. Dutton and A.J. Strojwas, Perspectives on technology and technology-driven CAD?, IEEE Trans. CAD-ICAS, vol. 19, no. 12, pp.?1544–1560, December, 2000.
a216是什么材质 腹胀腹痛吃什么药 突然暴瘦是什么原因 鼻炎吃什么药见效快 自来水养鱼为什么会死
4月26日什么星座 消业障是什么意思 竹心泡水喝有什么功效 soho是什么意思 一直耳鸣是什么原因引起的
心脏由什么组织构成 seeya是什么意思 扛把子是什么意思 什么是浅表性胃炎 八字指的是什么
多囊卵巢综合症吃什么食物好 喝碳酸饮料有什么危害 9月27是什么星座 微五行属什么 psa检查是什么意思
阴骘什么意思hcv8jop9ns7r.cn 做完手术吃什么水果好mmeoe.com 种植牙是什么意思hcv8jop9ns5r.cn 1990属什么生肖jasonfriends.com 小伙子是什么意思gangsutong.com
肝气不舒吃什么中成药hcv9jop1ns4r.cn 卤水是什么hcv8jop5ns3r.cn nibp是什么意思hcv8jop9ns4r.cn 床头朝什么方向是正确的jinxinzhichuang.com 为什么一吹空调就鼻塞hcv9jop6ns5r.cn
口腔有异味是什么原因引起的hcv9jop7ns1r.cn 什么情况下需要做肠镜hcv9jop1ns9r.cn 颐养天年是什么意思hcv7jop6ns4r.cn 农历和阳历有什么区别xinmaowt.com 芊芊是什么颜色naasee.com
宝宝吐奶是什么原因hcv8jop3ns4r.cn 健硕是什么意思hcv7jop6ns8r.cn 月建是什么意思hcv9jop4ns0r.cn bench是什么牌子hcv9jop4ns1r.cn 女性得疱疹是什么症状hcv8jop4ns4r.cn
百度