心肌缺血吃什么药| 铁饱和度低什么原因| 蚊子喜欢叮什么样的人| 疖子是什么原因引起的| 什么叫性生活| 什么是法西斯| 为什么会长痱子| 社论是什么| eb病毒igg抗体阳性是什么意思| 三点水加分念什么| 继发性高血压是什么意思| 宫颈癌是什么引起的| 腻害什么意思| 五谷是什么| 右枕前位是什么意思| 什么的高楼| 知天命是什么年纪| 什么东西可以解酒| 衣冠禽兽指什么生肖| 9.21是什么星座| 什么穿针大眼瞪小眼| 腿酸痛是什么原因| 鸟字旁有什么字| 脚腕筋疼是什么原因| 什么歌最好听| 白带多是什么原因引起的| 什么草药可以止痒| 基础代谢是什么意思| 石敢当是什么神仙| 腮帮子长痘痘是什么原因| 5月份什么星座| 老鼠的尾巴有什么作用| 什么是热射病| 莫非的近义词是什么| 出淤泥而不染是什么花| 梦见生孩子是什么征兆| 什么颜色的床单有助于睡眠| 老古董是什么意思| 7月16号是什么星座| 腋毛癣用什么药膏| 纤维蛋白原是什么意思| 安宫牛黄丸什么时候吃最好| 螃蟹的血是什么颜色的| 苹果为什么叫苹果| 血色素低吃什么补得快| 皮肤擦伤用什么药膏| 包皮发炎红肿用什么药| 朱祁镇为什么杀于谦| 吃什么养发| 大便干燥吃什么| 桂花是什么生肖| 老舍原名是什么| absolue是兰蔻的什么产品| 掉头发吃什么维生素| 州和洲有什么区别| 南瓜皮可以吃吗有什么作用| 二狗是什么意思| 空腹吃西红柿有什么危害| 怀孕乳房会有什么变化| 立克次体病是什么意思| 孔子姓什么| 头伏饺子二伏面三伏吃什么| 17楼五行属什么| 三个火字念什么| 双侧骶髂关节致密性骨炎是什么病| 欣字属于五行属什么| 智齿长什么样子图片| 十月二十八是什么星座| 吃什么对胃最好| 小孩子流鼻血是什么原因引起的| 为什么男人喜欢女人| 子孙满堂是什么生肖| 750是什么材质| 想睡睡不着是什么原因| 颈椎病用什么枕头最好| 李世民字什么| 大树像什么| 32周岁属什么生肖| 血栓吃什么药可以疏通血管| 为什么女生喜欢腹肌| 4.7号是什么星座| 售馨是什么意思| 海参什么季节吃好| 腹泻呕吐是什么原因| 新车上牌需要什么资料| 蛋白质变性的本质是什么| 为什么会得肺炎| 决明子泡水喝有什么好处| 什么是羊蝎子| 10月份是什么星座| 肾结石术后吃什么食物最好| 公主切适合什么脸型| 2020年是什么年| 诗五行属性是什么| 宋江是什么生肖| rog是什么牌子| 洗内裤用什么洗比较好| 77属什么生肖| 什么都不怕| 人工流产和无痛人流有什么区别| pef是什么意思| 孩子多动缺什么| 早泄吃什么药见效| 虾皮是什么虾| 参保是什么意思| 类风湿挂什么科室| 林俊杰什么时候出道的| hpv什么病毒| 中学校长什么级别| 睡觉总醒是什么原因| 血压高要吃什么蔬菜能降血压| 古怪是什么意思| 毛肚是什么部位| 农历9月17日是什么星座| espresso是什么咖啡| 舌头辣辣的是什么原因| 满目苍夷是什么意思| 裸眼视力是什么意思| 河南人喜欢吃什么菜| 香菜不能和什么一起吃| 预后是什么意思| 棺材一般用什么木头| 什么主皮毛| 万劫不复什么意思| 出汗少的人是什么原因| 为什么一紧张就想拉屎| 厂昔念什么| 天蝎什么象星座| 焚书坑儒什么意思| 嘴巴周围长痘痘是什么原因引起的| 蚁后长什么样| 吃什么能拉肚子| 硫酸是什么| 早上9点到10点是什么时辰| 酿酒用什么菌| 颈椎病用什么枕头最好| 病理科是干什么的| 疏忽是什么意思| 蚂蚁喜欢什么环境| 初心是什么意思| 井井有条是什么意思| 炒菜用什么油| 1993年属鸡是什么命| 姓郑的男孩取什么名字好| 嘴唇出血是什么原因| 怀孕头三个月吃什么好| 党的执政理念是什么| 做宫颈筛查能查出什么| 睡眠不好吃什么| 玫瑰糠疹什么原因引起的| 鹿的角像什么| 水痘能吃什么| 放线菌是什么| 女主是什么意思| 戒奶涨奶痛有什么缓解方法| 在水一方什么意思| 流鼻血挂什么科| 槊是什么意思| 喉咙干咳嗽是什么原因| 大专是什么意思| 默契是什么意思| 手术后吃什么营养品好| 这个是什么表情| 可定什么时间服用最好| 10.11是什么星座| 漏蛋白是什么原因造成的| 5.16是什么星座| 结肠憩室是什么意思| 鼻炎是什么症状| 精神焦虑症有什么表现有哪些| 帕金森病是什么病| tspot检查阳性能说明什么| 1月20是什么星座| ii是什么意思| 寸关尺代表什么器官| 死鬼什么意思| 热玛吉是做什么的| 梅干菜是什么菜做成的| 天丝是什么成分| 疝气什么症状| 高职是什么学历| 簸箕是什么意思| 滴虫性阴炎用什么药效果最好| 豆浆配什么主食当早餐| 远视是什么意思| 依云矿泉水为什么贵| 为什么眉毛越来越少| 籼米是什么米| 转折是什么意思| 卒中中心是干什么的| 挂职是什么意思| 出征是什么意思| 太平猴魁是什么茶| 鼻子冒热气是什么原因| 梦见和别人打架是什么意思| 四季豆不能和什么一起吃| 梁子是什么意思| 女孩子喜欢什么礼物| 黑猫警长为什么只有5集| 足三里在什么位置| 28什么意思| 滇红属于什么茶| 925银和s925银有什么区别| 鹿米念什么| 鱼为什么睁着眼睛睡觉| 睡着了流口水是什么原因| 银装素裹什么意思| 怀孕是什么症状| 脂肪肝吃什么药最好| 阴道干涩用什么药| 牛肉粉是什么调料| 鸡蛋壳属于什么垃圾| 牙痛吃什么药最好| 上火咳嗽吃什么药| 当家作主是什么生肖| 睾丸积液是什么原因造成的| cancer是什么意思| 针眼长什么样子图片| 塔塔粉是什么粉| 吃什么不长肉还能瘦| 梗米是什么米| 孩子咬手指甲是什么原因| 什么是户籍所在地| 做梦死人了是什么征兆| 黄体酮吃了有什么副作用| 高校自主招生是什么意思| 为难是什么意思| 子宫肌瘤是什么原因造成的| 女性腰疼是什么原因| 产奶速度慢是什么原因| 什么人容易得心肌炎| 怀孕胎盘低有什么影响| 甲状腺球蛋白低是什么原因| 脑梗有什么症状| 为什么女人阴唇会变黑| 孕妇吃什么蔬菜对胎儿好| 侵蚀是什么意思| 野格是什么酒| 什么叫肠化| 什么叫梅毒| 同人是什么意思| 什么的风| 番茄是什么时候传入中国的| 胡萝卜是什么科| 厉兵秣马什么意思| 口唇发绀是什么意思| 黄油是什么意思| 葡萄球菌感染是什么原因引起的| 屈光不正是什么| hcg下降是什么原因| 高血压可以喝什么饮料| young是什么意思| 通草长什么样图片| 胸前骨头疼是什么原因| 为什么会长闭口粉刺| 7月4日是什么星座| 阴囊湿疹用什么药效果最好| 白色的玉是什么玉| 去湿气吃什么食物| 吃饭吧唧嘴有什么说法| 生理期吃什么水果比较好| dyj什么意思| 联姻是什么意思| 属牛和什么属相相冲| 百度

2017年新疆完成招商引资5380亿元 超额完成目标任务

百度 而年底即将开工的宁句城际;以及规划中的宁镇城际、宁扬城际、宁马城际都会为促进南京都市圈的形成进一步助力。

In computer networking, a reliable protocol is a communication protocol that notifies the sender whether or not the delivery of data to intended recipients was successful. Reliability is a synonym for assurance, which is the term used by the ITU and ATM Forum, and leads to fault-tolerant messaging.

Reliable protocols typically incur more overhead than unreliable protocols, and as a result, function more slowly and with less scalability. This often is not an issue for unicast protocols, but it may become a problem for reliable multicast protocols.

Transmission Control Protocol (TCP), the main protocol used on the Internet, is a reliable unicast protocol; it provides the abstraction of a reliable byte stream to applications. UDP is an unreliable protocol and is often used in computer games, streaming media or in other situations where speed is an issue and some data loss may be tolerated because of the transitory nature of the data.

Often, a reliable unicast protocol is also connection oriented. For example, TCP is connection oriented, with the virtual-circuit ID consisting of source and destination IP addresses and port numbers. However, some unreliable protocols are connection oriented, such as Asynchronous Transfer Mode and Frame Relay. In addition, some connectionless protocols, such as IEEE 802.11, are reliable.

History

edit

Building on the packet switching concepts proposed by Donald Davies, the first communication protocol on the ARPANET was a reliable packet delivery procedure to connect its hosts via the 1822 interface.[1][2] A host computer simply arranged the data in the correct packet format, inserted the address of the destination host computer, and sent the message across the interface to its connected Interface Message Processor (IMP). Once the message was delivered to the destination host, an acknowledgment was delivered to the sending host. If the network could not deliver the message, the IMP would send an error message back to the sending host.

Meanwhile, the developers of CYCLADES and of ALOHAnet demonstrated that it was possible to build an effective computer network without providing reliable packet transmission. This lesson was later embraced by the designers of Ethernet.

If a network does not guarantee packet delivery, then it becomes the host's responsibility to provide reliability by detecting and retransmitting lost packets. Subsequent experience on the ARPANET indicated that the network itself could not reliably detect all packet delivery failures, and this pushed responsibility for error detection onto the sending host in any case. This led to the development of the end-to-end principle, which is one of the Internet's fundamental design principles.

Reliability properties

edit

A reliable service is one that notifies the user if delivery fails, while an unreliable one does not notify the user if delivery fails.[citation needed] For example, Internet Protocol (IP) provides an unreliable service. Together, Transmission Control Protocol (TCP) and IP provide a reliable service, whereas User Datagram Protocol (UDP) and IP provide an unreliable one.

In the context of distributed protocols, reliability properties specify the guarantees that the protocol provides with respect to the delivery of messages to the intended recipient(s).

An example of a reliability property for a unicast protocol is "at least once", i.e. at least one copy of the message is guaranteed to be delivered to the recipient.

Reliability properties for multicast protocols can be expressed on a per-recipient basis (simple reliability properties), or they may relate the fact of delivery or the order of delivery among the different recipients (strong reliability properties). In the context of multicast protocols, strong reliability properties express the guarantees that the protocol provides with respect to the delivery of messages to different recipients.

An example of a strong reliability property is last copy recall, meaning that as long as at least a single copy of a message remains available at any of the recipients, every other recipient that does not fail eventually also receives a copy. Strong reliability properties such as this one typically require that messages are retransmitted or forwarded among the recipients.

An example of a reliability property stronger than last copy recall is atomicity. The property states that if at least a single copy of a message has been delivered to a recipient, all other recipients will eventually receive a copy of the message. In other words, each message is always delivered to either all or none of the recipients.

One of the most complex strong reliability properties is virtual synchrony.

Reliable messaging is the concept of message passing across an unreliable infrastructure whilst being able to make certain guarantees about the successful transmission of the messages.[3] For example, that if the message is delivered, it is delivered at most once, or that all messages successfully delivered arrive in a particular order.

Reliable delivery can be contrasted with best-effort delivery, where there is no guarantee that messages will be delivered quickly, in order, or at all.

Implementations

edit

A reliable delivery protocol can be built on an unreliable protocol. An extremely common example is the layering of Transmission Control Protocol on the Internet Protocol, a combination known as TCP/IP.

Strong reliability properties are offered by group communication systems (GCSs) such as IS-IS, Appia framework, JGroups or QuickSilver Scalable Multicast. The QuickSilver Properties Framework is a flexible platform that allows strong reliability properties to be expressed in a purely declarative manner, using a simple rule-based language, and automatically translated into a hierarchical protocol.

One protocol that implements reliable messaging is WS-ReliableMessaging, which handles reliable delivery of SOAP messages.[4]

The ATM Service-Specific Coordination Function provides for transparent assured delivery with AAL5.[5][6][7]

IEEE 802.11 attempts to provide reliable service for all traffic. The sending station will resend a frame if the sending station does not receive an ACK frame within a predetermined period of time.

Real-time systems

edit

There is, however, a problem with the definition of reliability as "delivery or notification of failure" in real-time computing. In such systems, failure to deliver the real-time data will adversely affect the performance of the systems, and some systems, e.g. safety-critical, safety-involved, and some secure mission-critical systems, must be proved to perform at some specified minimum level. This, in turn, requires that a specified minimum reliability for the delivery of the critical data be met. Therefore, in these cases, it is only the delivery that matters; notification of the failure to deliver does ameliorate the failure. In hard real-time systems, all data must be delivered by the deadline or it is considered a system failure. In firm real-time systems, late data is still valueless but the system can tolerate some amount of late or missing data.[8][9]

There are a number of protocols that are capable of addressing real-time requirements for reliable delivery and timeliness:

MIL-STD-1553B and STANAG 3910 are well-known examples of such timely and reliable protocols for avionic data buses. MIL-1553 uses a 1?Mbit/s shared media for the transmission of data and the control of these transmissions, and is widely used in federated military avionics systems.[10] It uses a bus controller (BC) to command the connected remote terminals (RTs) to receive or transmit this data. The BC can, therefore, ensure that there will be no congestion, and transfers are always timely. The MIL-1553 protocol also allows for automatic retries that can still ensure timely delivery and increase the reliability above that of the physical layer. STANAG 3910, also known as EFABus in its use on the Eurofighter Typhoon, is, in effect, a version of MIL-1553 augmented with a 20?Mbit/s shared media bus for data transfers, retaining the 1?Mbit/s shared media bus for control purposes.

The Asynchronous Transfer Mode (ATM), the Avionics Full-Duplex Switched Ethernet (AFDX), and Time Triggered Ethernet (TTEthernet) are examples of packet-switched networks protocols where the timeliness and reliability of data transfers can be assured by the network. AFDX and TTEthernet are also based on IEEE 802.3 Ethernet, though not entirely compatible with it.

ATM uses connection-oriented virtual channels (VCs) which have fully deterministic paths through the network, and usage and network parameter control (UPC/NPC), which are implemented within the network, to limit the traffic on each VC separately. This allows the usage of the shared resources (switch buffers) in the network to be calculated from the parameters of the traffic to be carried in advance, i.e. at system design time. That they are implemented by the network means that these calculations remain valid even when other users of the network behave in unexpected ways, i.e. transmit more data than they are expected to. The calculated usages can then be compared with the capacities of these resources to show that, given the constraints on the routes and the bandwidths of these connections, the resource used for these transfers will never be over-subscribed. These transfers will therefore never be affected by congestion and there will be no losses due to this effect. Then, from the predicted maximum usages of the switch buffers, the maximum delay through the network can also be predicted. However, for the reliability and timeliness to be proved, and for the proofs to be tolerant of faults in and malicious actions by the equipment connected to the network, the calculations of these resource usages cannot be based on any parameters that are not actively enforced by the network, i.e. they cannot be based on what the sources of the traffic are expected to do or on statistical analyses of the traffic characteristics (see network calculus).[11]

AFDX uses frequency domain bandwidth allocation and traffic policing, that allows the traffic on each virtual link to be limited so that the requirements for shared resources can be predicted and congestion prevented so it can be proved not to affect the critical data.[12] However, the techniques for predicting the resource requirements and proving that congestion is prevented are not part of the AFDX standard.

TTEthernet provides the lowest possible latency in transferring data across the network by using time-domain control methods – each time triggered transfer is scheduled at a specific time so that contention for shared resources is controlled and thus the possibility of congestion is eliminated. The switches in the network enforce this timing to provide tolerance of faults in, and malicious actions on the part of, the other connected equipment. However, "synchronized local clocks are the fundamental prerequisite for time-triggered communication".[13] This is because the sources of critical data will have to have the same view of time as the switch, in order that they can transmit at the correct time and the switch will see this as correct. This also requires that the sequence with which a critical transfer is scheduled has to be predictable to both source and switch. This, in turn, will limit the transmission schedule to a highly deterministic one, e.g. the cyclic executive.

However, low latency in transferring data over the bus or network does not necessarily translate into low transport delays between the application processes that source and sink this data. This is especially true where the transfers over the bus or network are cyclically scheduled (as is commonly the case with MIL-STD-1553B and STANAG 3910, and necessarily so with AFDX and TTEthernet) but the application processes are not synchronized with this schedule.

With both AFDX and TTEthernet, there are additional functions required of the interfaces, e.g. AFDX's Bandwidth Allocation Gap control, and TTEthernet's requirement for very close synchronization of the sources of time-triggered data, that make it difficult to use standard Ethernet interfaces. Other methods for control of the traffic in the network that would allow the use of such standard IEEE 802.3 network interfaces is a subject of current research.[14]

See also

edit

References

edit
  1. ^ Gillies, J.; Cailliau, R. (2000). How the Web was Born: The Story of the World Wide Web. Oxford University Press. pp.?23–25. ISBN?0192862073.
  2. ^ Roberts, Dr. Lawrence G. (November 1978). "The Evolution of Packet Switching" (PDF). IEEE Invited Paper. Retrieved September 10, 2017. In nearly all respects, Davies' original proposal, developed in late 1965, was similar to the actual networks being built today.
  3. ^ W3C paper on reliable messaging
  4. ^ WS-ReliableMessaging specification (PDF)
  5. ^ Young-ki Hwang, et al., Service Specific Coordination Function for Transparent Assured Delivery with AAL5 (SSCF-TADAS), Military Communications Conference Proceedings, 1999. MILCOM 1999, vol.2, pages 878–882. doi:10.1109/MILCOM.1999.821329
  6. ^ ATM Forum, The User Network Interface (UNI), v. 3.1, ISBN?0-13-393828-X, Prentice Hall PTR, 1995.
  7. ^ ITU-T, B-ISDN ATM Adaptation Layer specification: Type 5 AAL, Recommendation I.363.5, International Telecommunication Union, 1998.
  8. ^ S., Schneider, G., Pardo-Castellote, M., Hamilton. "Can Ethernet Be Real Time?", Real-Time Innovations, Inc., 2001
  9. ^ Dan Rubenstein, Jim Kurose, Don Towsley, "Real-Time Reliable Multicast Using Proactive Forward Error Correction", NOSSDAV ’98
  10. ^ Mats Ekman, Avionic Architectures Trends and challenges (PDF), KTH, archived from the original (PDF) on 2025-08-14, Each system has its own computers performing its own functions
  11. ^ Kim, Y. J.; Chang, S. C.; Un, C. K.; Shin, B. C. (March 1996). "UPC/NPC algorithm for guaranteed QoS in ATM networks". Computer Communications. 19 (3). Amsterdam, the Netherlands: Elsevier Science Publishers: 216–225. doi:10.1016/0140-3664(96)01063-8.
  12. ^ "AFDX? / ARINC 664 Tutorial" (PDF). TechSAT. 2025-08-14. Archived from the original (PDF) on 2025-08-14. Retrieved 2025-08-14.
  13. ^ Wilfried Steiner and Bruno Dutertre, "SMT-Based Formal Verification of a TTEthernet Synchronization Function", S. Kowalewski and M. Roveri (Eds.), FMICS 2010, LNCS 6371, pp. 148–163, 2010.
  14. ^ D. W. Charlton; et?al. (2013), "An Avionic Gigabit Ethernet Network", Avionics, Fiber-Optics and Photonics Conference (AVFOP), IEEE, pp.?17–18, doi:10.1109/AVFOP.2013.6661601, ISBN?978-1-4244-7348-9, S2CID?3162009
上颌窦囊肿是什么意思 舌头尖有小红点这是什么症状 hyundai是什么牌子 白起为什么被赐死 风热感冒咳嗽吃什么药
早泄吃什么药 滋生是什么意思 12颗珠子的手串什么意思 硫酸是什么 皮肤黑适合穿什么颜色的衣服
飞的最高的鸟是什么鸟 什么高什么长 腋臭挂什么科 心神不定是什么生肖 帝舵手表什么档次
冲任失调是什么意思 菜心又叫什么菜 鲫鱼吃什么食物 秦朝之前是什么朝代 室内用什么隔墙最便宜
手关节黑是什么原因hcv9jop7ns9r.cn 苹果不能和什么一起吃hcv8jop8ns7r.cn 萤火虫吃什么食物sscsqa.com 意象是什么意思hcv8jop5ns9r.cn 怀孕前三个月应该注意什么hcv8jop9ns2r.cn
枝柯是什么意思hcv9jop5ns3r.cn 苏小小属什么生肖hcv7jop4ns8r.cn 肾虚吃什么中成药hcv8jop6ns8r.cn 中国最大的海是什么海hcv8jop5ns3r.cn 公鸡为什么会打鸣hcv8jop3ns5r.cn
软蛋是什么意思hcv9jop2ns5r.cn 大生化挂什么科hcv9jop1ns0r.cn 抑郁症吃的药叫什么hcv8jop7ns8r.cn 紫米和黑米有什么区别hcv7jop9ns3r.cn 谨记教诲是什么意思jingluanji.com
粒细胞是什么hcv9jop2ns0r.cn 什么是碱hcv7jop5ns6r.cn 狒狒是什么意思hcv8jop5ns0r.cn 人为什么会做噩梦chuanglingweilai.com 容易淤青的体质叫什么hcv9jop5ns7r.cn
百度