大圈什么意思| 肾囊肿有什么危害| 胆汁是由什么分泌的| 芭蕉花炖猪心治什么病| 什么叫柏拉图式的爱情| 瘦脸针的危害有什么副作用| 什么食物含有维生素b| 油光满面是什么意思| 吃什么减脂肪最快最有效的方法| 蚕除了吃桑叶还能吃什么| 肝掌是什么原因引起的| 6.3是什么星座| 芈月是秦始皇什么人| 补肾吃什么药效果最好| 桂林山水甲天下是什么意思| 10月6日是什么星座| 发挥是什么意思| 鼻子流黄水是什么原因| a-l-岩藻糖苷酶偏高是什么原因| 血栓弹力图是查什么的| 荣五行属什么| 孕酮低会有什么影响| panerai是什么牌子| 胃疼买什么药| 梦见黑山羊是什么预兆| 射手座和什么星座最配| 什么茶能去体内湿气| 天梭表什么档次| 志趣相投是什么意思| 谨记的意思是什么| 焦俊艳和焦恩俊是什么关系| 女生大姨妈推迟是什么原因| 上吐下泻吃什么药| nad是什么| 南方有什么生肖| 心率过慢有什么危害| 怀男孩和女孩有什么区别| 汗臭和狐臭有什么区别怎么辨别| 喝酒手发抖是什么原因| 巴沙鱼是什么鱼| 天杀的是什么意思| 杏仁有什么功效和作用| 怎么知道自己缺什么五行| 满是什么结构| 不适随诊是什么意思| 杜康原是什么| 乳头瘤是什么病| 原籍是什么意思| 生不如死是什么生肖| 临床医学专业学什么| 单亲家庭是什么意思| 幽闭恐惧症是什么症状| 阴骘什么意思| 血压高有什么表现| 新加坡用什么货币| 属猴本命佛是什么佛| nac是什么| 什么时候同房容易怀孕| 钧鉴是什么意思| 左肾肾盂分离什么意思| 尿胆原阳性是什么病| adh是什么激素| 双排是什么意思| 一什么阳光填量词| 天使长什么样| 深圳副市长什么级别| 腱子肉是什么意思| 金色搭配什么颜色好看| 什么醒酒| 意难平什么意思| 关节炎吃什么药好得快| 关二爷是什么神| w是什么单位| 手指麻木什么原因| 淡蓝色配什么颜色好看| 树脂材料是什么| 大姨妈量少是什么原因| 禄神是什么意思| 泌尿感染吃什么药| 全身检查挂什么科| 荔枝补什么| 为什么便秘| 什么颜色可以调成红色| 右眼跳什么| 牛拉稀用什么药最快| 人工虎骨粉是什么做的| 用维生素e擦脸有什么好处和坏处| scr医学上是什么意思| 男人吃什么对性功能好| 眉毛上长痘是什么原因| 浑身疼痛什么原因| 指甲薄软是什么原因| 高血糖能吃什么| 化学键是什么| 柏拉图式恋爱是什么意思| mch是什么意思| 耳道炎用什么药最有效| 火箭是干什么用的| 读书有什么好处| 月经期喝红糖水有什么好处| 弹颏是什么意思| 风平浪静是什么生肖| 探囊取物是什么意思| 什么花最好养| 做梦梦到对象出轨是什么意思| 自然生化流产是什么意思| 什么动物站着睡觉| 精满自溢是什么意思| 特诊科是什么意思| 什么而不| 辐照食品什么意思| 溢脂性皮炎用什么药| 物业费都包括什么服务| 点心是什么意思| 暗渡陈仓是什么生肖| 稽留热常见于什么病| 为什么老是说梦话| 海粉是什么| rv是什么意思| 2月23号是什么星座| 什么东西补铁效果好而且最快| 什么样的红点是艾滋病| 打喷嚏是什么预兆| 触不可及什么意思| 朝什么暮什么| 尿酸高吃什么药| 疝气是什么意思| 子是什么生肖| 事业有成是什么意思| 为什么会得风湿| 什么毛什么血| 企业bg是什么意思| 肠易激综合征吃什么中成药| 鼻炎看什么科| 切勿是什么意思| 臣字五行属什么| 阿佛洛狄忒是什么神| 黄痰黄鼻涕吃什么药| 为什么水能灭火| 石榴什么时候开花| 办慢性病有什么好处| 三月14号是什么星座| 胸口疼是什么病的前兆| 头皮毛囊炎用什么洗发水| 为什么老是梦见一个人| 咳嗽痰中带血是什么原因| 北京五行属什么| 喝什么饮料解酒最快最有效| 牙疼吃什么药止痛快| 间接胆红素高是什么意思| 夏至什么意思| 省内流量是什么意思| 转氨酶高说明什么| 屁股后面骨头疼是什么原因| 距骨在什么位置| 粘纤是什么材料| 申酉是什么时间| 儿童过敏性咳嗽吃什么药| 韭黄是什么| 畏寒是什么意思| m型发际线适合什么发型| 松石绿是什么颜色| tags是什么意思| 柳州有什么大学| 胎盘长什么样子图片| 句号是什么意思| tf口红是什么牌子| 鼻孔里面痒是什么原因| 大宗商品是什么意思| 左手有点麻是什么原因| 天天吹空调有什么危害| 拆线挂什么科| 芃字五行属什么| 松香对人体有什么危害| 喉咙有异物感看什么科| 类风湿性关节炎用什么药| 香港说什么语言| rhe阴性是什么意思| 狗消化不良吃什么药| 没有什么会永垂不朽| 雅戈尔男装什么档次| 11月生日是什么星座| 傲慢什么意思| 盆腔检查做什么检查| 为什么突然有狐臭了| 腱鞘囊肿是什么原因引起的| 心脏官能症吃什么药| 疝气是什么病怎样治疗| 月字旁的字与什么有关| 做是什么感觉| 1126是什么星座| 根充是什么意思| 子痫前期是什么意思| 蜱虫用什么药可以消灭| 腰两边疼是什么原因| 二氧化碳分压高说明什么| 什么是催眠| 下眼皮跳动是什么原因| 宫颈病变是什么意思| 为什么打雷闪电| 跖疣是什么原因引起的| 社保缴费基数是什么意思| 什么闻什么睹| 嫡传弟子是什么意思| 脚崴了用什么药| 微凉是什么意思| 朋友圈ps是什么意思| 肋骨断了是什么感觉| 1988是什么年| 办残疾证需要什么条件| 西洋参是补什么的| 中医调理身体挂什么科| 男人蛋蛋疼是什么原因| 看书有什么好处| 戴帽子是什么意思| 八七年属什么的| hb是什么意思医学| 士官是什么级别| 为什么印度人叫阿三| 保税区是什么意思| 23岁属什么| 什么叫弱视| 碱性食物对身体有什么好处| 八七年属兔的是什么命| 斋醮是什么意思| 人言轻微是什么意思| 你喜欢我什么我改| 骨关节疼痛什么原因| 口腔溃疡是什么原因| 什么是呼吸性碱中毒| 心慌心跳吃什么药| 脑血管痉挛吃什么药| 重金属中毒喝什么解毒| 扁桃体炎吃什么药最好效果好| 排酸对身体有什么好处| 空调综合征有什么症状| tga是什么| 送礼送什么水果| 归宁是什么意思| 排山倒海是什么意思| 王加申念什么| 吃什么水果对嗓子好| 什么可以吃| 郑州有什么好玩的| 性欲是什么意思| 什么是硬下疳| 双侧瞳孔缩小见于什么| 咳嗽吃什么药效果好| 国务院秘书长什么级别| 后背疼应该挂什么科| 子宫位于腹部什么位置| 引火上身是什么意思| 腚什么意思| 四环素片主要治什么病| 什么万千| 保姆是什么意思| 什么什么各异| 迅雷不及掩耳之势是什么意思| 病原体是什么意思| 为什么月经会提前来| 割包皮有什么影响| 处女座和什么星座最配| 团购是什么意思| 无犯罪证明需要什么材料| 百度

港媒:调查显示中国年轻消费者更爱国货 外国品牌受冷落

百度 可即便如此,他最终还是交出了27分6篮板8助攻的全面数据,火箭队取得赛季第59胜,也刷新队史纪录。

In computing, quadruple precision (or quad precision) is a binary floating-point–based computer number format that occupies 16 bytes (128 bits) with precision at least twice the 53-bit double precision.

This 128-bit quadruple precision is designed for applications needing results in higher than double precision,[1] and as a primary function, to allow computing double precision results more reliably and accurately by minimising overflow and round-off errors in intermediate calculations and scratch variables. William Kahan, primary architect of the original IEEE 754 floating-point standard noted, "For now the 10-byte Extended format is a tolerable compromise between the value of extra-precise arithmetic and the price of implementing it to run fast; very soon two more bytes of precision will become tolerable, and ultimately a 16-byte format ... That kind of gradual evolution towards wider precision was already in view when IEEE Standard 754 for Floating-Point Arithmetic was framed."[2]

In IEEE 754-2008 the 128-bit base-2 format is officially referred to as binary128.

IEEE 754 quadruple-precision binary floating-point format: binary128

edit

The IEEE 754 standard specifies a binary128 as having:

The sign bit determines the sign of the number (including when this number is zero, which is signed). "1" stands for negative.

This gives from 33 to 36 significant decimal digits precision. If a decimal string with at most 33 significant digits is converted to the IEEE 754 quadruple-precision format, giving a normal number, and then converted back to a decimal string with the same number of digits, the final result should match the original string. If an IEEE 754 quadruple-precision number is converted to a decimal string with at least 36 significant digits, and then converted back to quadruple-precision representation, the final result must match the original number.[3]

The format is written with an implicit lead bit with value 1 unless the exponent is stored with all zeros (used to encode subnormal numbers and zeros). Thus only 112 bits of the significand appear in the memory format, but the total precision is 113 bits (approximately 34 decimal digits: log10(2113) ≈ 34.016) for normal values; subnormals have gracefully degrading precision down to 1 bit for the smallest non-zero value. The bits are laid out as:

 

Exponent encoding

edit

The quadruple-precision binary floating-point exponent is encoded using an offset binary representation, with the zero offset being 16383; this is also known as exponent bias in the IEEE 754 standard.

  • Emin = 000116 ? 3FFF16 = ?16382
  • Emax = 7FFE16 ? 3FFF16 = 16383
  • Exponent bias = 3FFF16 = 16383

Thus, as defined by the offset binary representation, in order to get the true exponent, the offset of 16383 has to be subtracted from the stored exponent.

The stored exponents 000016 and 7FFF16 are interpreted specially.

Exponent Significand zero Significand non-zero Equation
000016 0, ?0 subnormal numbers (?1)signbit × 2?16382 × 0.significandbits2
000116, ..., 7FFE16 normalized value (?1)signbit × 2exponentbits2 ? 16383 × 1.significandbits2
7FFF16 ± NaN (quiet, signaling)

The minimum strictly positive (subnormal) value is 2?16494 ≈ 10?4965 and has a precision of only one bit. The minimum positive normal value is 2?163823.3621 × 10?4932 and has a precision of 113 bits, i.e. ±2?16494 as well. The maximum representable value is 216384 ? 2162711.1897 × 104932.

Quadruple precision examples

edit

These examples are given in bit representation, in hexadecimal, of the floating-point value. This includes the sign, (biased) exponent, and significand.

0000 0000 0000 0000 0000 0000 0000 000116 = 2?16382 × 2?112 = 2?16494
                                          ≈ 6.4751751194380251109244389582276465525 × 10?4966
                                          (smallest positive subnormal number)

0000 ffff ffff ffff ffff ffff ffff ffff16 = 2?16382 × (1 ? 2?112)
                                          ≈ 3.3621031431120935062626778173217519551 × 10?4932
                                          (largest subnormal number)

0001 0000 0000 0000 0000 0000 0000 000016 = 2?16382
                                          ≈ 3.3621031431120935062626778173217526026 × 10?4932
                                          (smallest positive normal number)

7ffe ffff ffff ffff ffff ffff ffff ffff16 = 216383 × (2 ? 2?112)
                                          ≈ 1.1897314953572317650857593266280070162 × 104932
                                          (largest normal number)

3ffe ffff ffff ffff ffff ffff ffff ffff16 = 1 ? 2?113
                                          ≈ 0.9999999999999999999999999999999999037
                                          (largest number less than one)

3fff 0000 0000 0000 0000 0000 0000 000016 = 1 (one)

3fff 0000 0000 0000 0000 0000 0000 000116 = 1 + 2?112
                                          ≈ 1.0000000000000000000000000000000001926
                                          (smallest number larger than one)

4000 0000 0000 0000 0000 0000 0000 000016 = 2
c000 0000 0000 0000 0000 0000 0000 000016 = ?2

0000 0000 0000 0000 0000 0000 0000 000016 = 0
8000 0000 0000 0000 0000 0000 0000 000016 = ?0

7fff 0000 0000 0000 0000 0000 0000 000016 = infinity
ffff 0000 0000 0000 0000 0000 0000 000016 = ?infinity

4000 921f b544 42d1 8469 898c c517 01b816 ≈ 3.1415926535897932384626433832795027975
                                          (closest approximation to π)

3ffd 5555 5555 5555 5555 5555 5555 555516 ≈ 0.3333333333333333333333333333333333173
                                          (closest approximation to 1/3)

4008 74d9 9564 5aa0 0c11 d0cc 9770 5e5b16 ≈ 745.69987158227021999999999999999997147
                                          (closest approximation to the number of
                                          Watts corresponding to 1 horsepower)

By default, 1/3 rounds down like double precision, because of the odd number of bits in the significand. Thus, the bits beyond the rounding point are 0101... which is less than 1/2 of a unit in the last place.

Double-double arithmetic

edit

A common software technique to implement nearly quadruple precision using pairs of double-precision values is sometimes called double-double arithmetic.[4][5][6] Using pairs of IEEE double-precision values with 53-bit significands, double-double arithmetic provides operations on numbers with significands of at least[4] 2 × 53 = 106 bits (actually 107 bits[7] except for some of the largest values, due to the limited exponent range), only slightly less precise than the 113-bit significand of IEEE binary128 quadruple precision. The range of a double-double remains essentially the same as the double-precision format because the exponent has still 11 bits,[4] significantly lower than the 15-bit exponent of IEEE quadruple precision (a range of 1.8 × 10308 for double-double versus 1.2 × 104932 for binary128).

In particular, a double-double/quadruple-precision value q in the double-double technique is represented implicitly as a sum q = x + y of two double-precision values x and y, each of which supplies half of q's significand.[5] That is, the pair (x, y) is stored in place of q, and operations on q values (+, ?, ×, ...) are transformed into equivalent (but more complicated) operations on the x and y values. Thus, arithmetic in this technique reduces to a sequence of double-precision operations; since double-precision arithmetic is commonly implemented in hardware, double-double arithmetic is typically substantially faster than more general arbitrary-precision arithmetic techniques.[4][5]

Note that double-double arithmetic has the following special characteristics:[8]

  • As the magnitude of the value decreases, the amount of extra precision also decreases. Therefore, the smallest number in the normalized range is narrower than double precision. The smallest number with full precision is 1000...02 (106 zeros) × 2?1074, or 1.000...02 (106 zeros) × 2?968. Numbers whose magnitude is smaller than 2?1021 will not have additional precision compared with double precision.
  • The actual number of bits of precision can vary. In general, the magnitude of the low-order part of the number is no greater than a half ULP of the high-order part. If the low-order part is less than half ULP of the high-order part, significant bits (either all 0s or all 1s) are implied between the significand of the high-order and low-order numbers. Certain algorithms that rely on having a fixed number of bits in the significand can fail when using 128-bit long double numbers.
  • Because of the reason above, it is possible to represent values like 1 + 2?1074, which is the smallest representable number greater than 1.

In addition to the double-double arithmetic, it is also possible to generate triple-double or quad-double arithmetic if higher precision is required without any higher precision floating-point library. They are represented as a sum of three (or four) double-precision values respectively. They can represent operations with at least 159/161 and 212/215 bits respectively. A natural extension to an arbitrary number of terms (though limited by the exponent range) is called floating-point expansions.

A similar technique can be used to produce a double-quad arithmetic, which is represented as a sum of two quadruple-precision values. They can represent operations with at least 226 (or 227) bits.[9]

Implementations

edit

Quadruple precision is often implemented in software by a variety of techniques (such as the double-double technique above, although that technique does not implement IEEE quadruple precision), since direct hardware support for quadruple precision is, as of 2016, less common (see "Hardware support" below). One can use general arbitrary-precision arithmetic libraries to obtain quadruple (or higher) precision, but specialized quadruple-precision implementations may achieve higher performance.

Computer-language support

edit

A separate question is the extent to which quadruple-precision types are directly incorporated into computer programming languages.

Quadruple precision is specified in Fortran by the real(real128) (module iso_fortran_env from Fortran 2008 must be used, the constant real128 is equal to 16 on most processors), or as real(selected_real_kind(33, 4931)), or in a non-standard way as REAL*16. (Quadruple-precision REAL*16 is supported by the Intel Fortran Compiler[10] and by the GNU Fortran compiler[11] on x86, x86-64, and Itanium architectures, for example.)

For the C programming language, ISO/IEC TS 18661-3 (floating-point extensions for C, interchange and extended types) specifies _Float128 as the type implementing the IEEE 754 quadruple-precision format (binary128).[12] Alternatively, in C/C++ with a few systems and compilers, quadruple precision may be specified by the long double type, but this is not required by the language (which only requires long double to be at least as precise as double), nor is it common.

As of C++23, the C++ language defines a <stdfloat> header that contains fixed-width floating-point types. Implementations of these are optional, but if supported, std::float128_t corresponds to quadruple precision.

On x86 and x86-64, the most common C/C++ compilers implement long double as either 80-bit extended precision (e.g. the GNU C Compiler gcc[13] and the Intel C++ Compiler with a /Qlong?double switch[14]) or simply as being synonymous with double precision (e.g. Microsoft Visual C++[15]), rather than as quadruple precision. The procedure call standard for the ARM 64-bit architecture (AArch64) specifies that long double corresponds to the IEEE 754 quadruple-precision format.[16] On a few other architectures, some C/C++ compilers implement long double as quadruple precision, e.g. gcc on PowerPC (as double-double[17][18][19]) and SPARC,[20] or the Sun Studio compilers on SPARC.[21] Even if long double is not quadruple precision, however, some C/C++ compilers provide a nonstandard quadruple-precision type as an extension. For example, gcc provides a quadruple-precision type called __float128 for x86, x86-64 and Itanium CPUs,[22] and on PowerPC as IEEE 128-bit floating-point using the -mfloat128-hardware or -mfloat128 options;[23] and some versions of Intel's C/C++ compiler for x86 and x86-64 supply a nonstandard quadruple-precision type called _Quad.[24]

Zig provides support for it with its f128 type.[25]

Google's work-in-progress language Carbon provides support for it with the type called f128.[26]

As of 2024, Rust is currently working on adding a new f128 type for IEEE quadruple-precision 128-bit floats.[27]

Libraries and toolboxes

edit
  • The GCC quad-precision math library, libquadmath, provides __float128 and __complex128 operations.
  • The Boost multiprecision library Boost.Multiprecision provides unified cross-platform C++ interface for __float128 and _Quad types, and includes a custom implementation of the standard math library.[28]
  • The Multiprecision Computing Toolbox for MATLAB allows quadruple-precision computations in MATLAB. It includes basic arithmetic functionality as well as numerical methods, dense and sparse linear algebra.[29]
  • The DoubleFloats[30] package provides support for double-double computations for the Julia programming language.
  • The doubledouble.py[31] library enables double-double computations in Python. [citation needed]
  • Mathematica supports IEEE quad-precision numbers: 128-bit floating-point values (Real128), and 256-bit complex values (Complex256).[citation needed]

Hardware support

edit

IEEE quadruple precision was added to the IBM System/390 G5 in 1998,[32] and is supported in hardware in subsequent z/Architecture processors.[33][34] The IBM POWER9 CPU (Power ISA 3.0) has native 128-bit hardware support.[23]

Native support of IEEE 128-bit floats is defined in PA-RISC 1.0,[35] and in SPARC V8[36] and V9[37] architectures (e.g. there are 16 quad-precision registers %q0, %q4, ...), but no SPARC CPU implements quad-precision operations in hardware as of 2004.[38]

Non-IEEE extended-precision (128 bits of storage, 1 sign bit, 7 exponent bits, 112 fraction bits, 8 bits unused) was added to the IBM System/370 series (1970s–1980s) and was available on some System/360 models in the 1960s (System/360-85,[39] -195, and others by special request or simulated by OS software).

The Siemens 7.700 and 7.500 series mainframes and their successors support the same floating-point formats and instructions as the IBM System/360 and System/370.

The VAX processor implemented non-IEEE quadruple-precision floating point as its "H Floating-point" format. It had one sign bit, a 15-bit exponent and 112-fraction bits, however the layout in memory was significantly different from IEEE quadruple precision and the exponent bias also differed. Only a few of the earliest VAX processors implemented H Floating-point instructions in hardware, all the others emulated H Floating-point in software.

The NEC Vector Engine architecture supports adding, subtracting, multiplying and comparing 128-bit binary IEEE 754 quadruple-precision numbers.[40] Two neighboring 64-bit registers are used. Quadruple-precision arithmetic is not supported in the vector register.[41]

The RISC-V architecture specifies a "Q" (quad-precision) extension for 128-bit binary IEEE 754-2008 floating-point arithmetic.[42] The "L" extension (not yet certified) will specify 64-bit and 128-bit decimal floating point.[43]

Quadruple-precision (128-bit) hardware implementation should not be confused with "128-bit FPUs" that implement SIMD instructions, such as Streaming SIMD Extensions or AltiVec, which refers to 128-bit vectors of four 32-bit single-precision or two 64-bit double-precision values that are operated on simultaneously.

See also

edit

References

edit
  1. ^ Bailey, David H.; Borwein, Jonathan M. (July 6, 2009). "High-Precision Computation and Mathematical Physics" (PDF).
  2. ^ Higham, Nicholas (2002). "Designing stable algorithms" in Accuracy and Stability of Numerical Algorithms (2 ed). SIAM. p. 43.
  3. ^ Kahan, Wiliam (1 October 1987). "Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-Point Arithmetic" (PDF).
  4. ^ a b c d Yozo Hida, X. Li, and D. H. Bailey, Quad-Double Arithmetic: Algorithms, Implementation, and Application, Lawrence Berkeley National Laboratory Technical Report LBNL-46996 (2000). Also Y. Hida et al., Library for double-double and quad-double arithmetic (2007).
  5. ^ a b c J. R. Shewchuk, Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates, Discrete & Computational Geometry 18: 305–363, 1997.
  6. ^ Knuth, D. E. The Art of Computer Programming (2nd ed.). chapter 4.2.3. problem 9.
  7. ^ Robert Munafo. F107 and F161 High-Precision Floating-Point Data Types (2011).
  8. ^ 128-Bit Long Double Floating-Point Data Type.
  9. ^ sourceware.org Re: The state of glibc libm
  10. ^ "Intel Fortran Compiler Product Brief (archived copy on web.archive.org)" (PDF). Su. Archived from the original on October 25, 2008. Retrieved 2025-08-06.
  11. ^ "GCC 4.6 Release Series - Changes, New Features, and Fixes". Retrieved 2025-08-06.
  12. ^ "ISO/IEC TS 18661-3" (PDF). 2025-08-06. Retrieved 2025-08-06.
  13. ^ i386 and x86-64 Options (archived copy on web.archive.org), Using the GNU Compiler Collection.
  14. ^ Intel Developer Site.
  15. ^ MSDN homepage, about Visual C++ compiler.
  16. ^ "Procedure Call Standard for the ARM 64-bit Architecture (AArch64)" (PDF). 2025-08-06. Archived from the original (PDF) on 2025-08-06. Retrieved 2025-08-06.
  17. ^ RS/6000 and PowerPC Options, Using the GNU Compiler Collection.
  18. ^ Inside Macintosh – PowerPC Numerics. Archived October 9, 2012, at the Wayback Machine.
  19. ^ 128-bit long double support routines for Darwin Archived 2025-08-06 at the Wayback Machine.
  20. ^ SPARC Options, Using the GNU Compiler Collection.
  21. ^ The Math Libraries, Sun Studio 11 Numerical Computation Guide (2005).
  22. ^ Additional Floating Types, Using the GNU Compiler Collection
  23. ^ a b "GCC 6 Release Series - Changes, New Features, and Fixes". Retrieved 2025-08-06.
  24. ^ Intel C++ Forums (2007).
  25. ^ "Floats". ziglang.org. Retrieved 7 January 2024.
  26. ^ "Carbon Language's main repository - Language design". GitHub. 2025-08-06. Retrieved 2025-08-06.
  27. ^ Cross, Travis. "Tracking Issue for f16 and f128 float types". GitHub. Retrieved 2025-08-06.
  28. ^ "Boost.Multiprecision – float128". Retrieved 2025-08-06.
  29. ^ Holoborodko, Pavel (2025-08-06). "Fast Quadruple Precision Computations in MATLAB". Retrieved 2025-08-06.
  30. ^ "DoubleFloats.jl". GitHub.
  31. ^ "doubledouble.py". GitHub.
  32. ^ Schwarz, E. M.; Krygowski, C. A. (September 1999). "The S/390 G5 floating-point unit". IBM Journal of Research and Development. 43 (5/6): 707–721. CiteSeerX 10.1.1.117.6711. doi:10.1147/rd.435.0707.
  33. ^ Gerwig, G.; Wetter, H.; Schwarz, E. M.; Haess, J.; Krygowski, C. A.; Fleischer, B. M.; Kroener, M. (May 2004). "The IBM eServer z990 floating-point unit. IBM J. Res. Dev. 48". pp. 311–322.
  34. ^ Schwarz, Eric (June 22, 2015). "The IBM z13 SIMD Accelerators for Integer, String, and Floating-Point" (PDF). Archived from the original (PDF) on July 13, 2015. Retrieved July 13, 2015.
  35. ^ "Implementor support for the binary interchange formats". IEEE. Archived from the original on 2025-08-06. Retrieved 2025-08-06.
  36. ^ The SPARC Architecture Manual: Version 8 (archived copy on web.archive.org) (PDF). SPARC International, Inc. 1992. Archived from the original (PDF) on 2025-08-06. Retrieved 2025-08-06. SPARC is an instruction set architecture (ISA) with 32-bit integer and 32-, 64-, and 128-bit IEEE Standard 754 floating-point as its principal data types.
  37. ^ Weaver, David L.; Germond, Tom, eds. (1994). The SPARC Architecture Manual: Version 9 (archived copy on web.archive.org) (PDF). SPARC International, Inc. Archived from the original (PDF) on 2025-08-06. Retrieved 2025-08-06. Floating-point: The architecture provides an IEEE 754-compatible floating-point instruction set, operating on a separate register file that provides 32 single-precision (32-bit), 32 double-precision (64-bit), 16 quad-precision (128-bit) registers, or a mixture thereof.
  38. ^ "SPARC Behavior and Implementation". Numerical Computation Guide — Sun Studio 10. Sun Microsystems, Inc. 2004. Retrieved 2025-08-06. There are four situations, however, when the hardware will not successfully complete a floating-point instruction: ... The instruction is not implemented by the hardware (such as ... quad-precision instructions on any SPARC FPU).
  39. ^ Padegs, A. (1968). "Structural aspects of the System/360 Model 85, III: Extensions to floating-point architecture". IBM Systems Journal. 7: 22–29. doi:10.1147/sj.71.0022.
  40. ^ Vector Engine AssemblyLanguage Reference Manual, Chapter4 Assembler Syntax page 23.
  41. ^ SX-Aurora TSUBASA Architecture Guide Revision 1.1, pp. 38, 60.
  42. ^ RISC-V ISA Specification v. 20191213, Chapter 13, “Q” Standard Extension for Quad-Precision Floating-Point, page 79.
  43. ^ [1] Chapter 15, p. 95.
edit
舌头发白有齿痕是什么原因 为什么腿会肿 丙肝吃什么药效果好 运动减肥为什么体重不减反增 为什么来月经会头疼
松花蛋不能和什么一起吃 乙脑是什么病 桑葚酒有什么功效 持续耳鸣是什么原因引起的 过敏性紫癜有什么危害
甯字五行属什么 祈禳是什么意思 口嗨什么意思 不加热血清反应素试验是什么 跖疣去医院挂什么科室
甜醋是什么醋 全身酸痛什么原因 弥散是什么意思 腥辣食物指的是什么 搬家下雨是什么兆头
岳绮罗是什么来历aiwuzhiyu.com 柠檬酸是什么东西hcv8jop0ns7r.cn 翅膀最长的鸟是什么鸟hcv8jop2ns2r.cn m样症状是什么hcv8jop6ns6r.cn 什么东西驱蛇效果最好hcv8jop2ns2r.cn
胸腔积液是什么原因引起的hcv8jop6ns3r.cn 为什么眼睛会红hcv8jop9ns8r.cn 男人左手麻木什么原因hcv8jop5ns0r.cn 成佛是什么意思hcv8jop1ns3r.cn 半边脸疼是什么原因hcv8jop7ns0r.cn
什么叫扁平疣长什么样xinmaowt.com 动物园里有什么动物xinmaowt.com 什么的风筝hcv9jop3ns0r.cn 女人左手掌有痣代表什么hcv8jop4ns4r.cn 麦冬是什么植物hcv8jop3ns5r.cn
减肥晚餐适合吃什么hcv7jop6ns3r.cn 孕妇佩戴什么保胎辟邪hcv7jop9ns1r.cn 8月15日什么星座hcv8jop6ns0r.cn 三五行属什么hcv8jop0ns1r.cn 真棒是什么意思hcv7jop7ns3r.cn
百度