回族不吃什么肉| 鹿米念什么| 百日咳是什么| 1999年五行属什么| 5是什么生肖| 晚上睡觉腿酸难受是什么原因| 前庭大腺囊肿是什么原因引起的| 游离是什么意思| 屎为什么是黑色的| 过生日吃什么| 地奥心血康软胶囊主治什么病| 飞机杯是什么感觉| 喝老陈醋有什么好处| 皮疹是什么原因引起的| 肺热吃什么药| 嘴巴疱疹用什么药膏| 蝉是什么| 天癸是什么意思| 四个月宝宝可以吃什么辅食| 头疼是因为什么| 血沉高是什么原因| nana是什么意思| 糖醋鱼用什么鱼| 吩可以组什么词| 什么叫败血症| 难怪是什么意思| 现在有什么好的创业项目| 吃什么药可以自杀| 正方形体积公式是什么| 月经推迟半个月是什么原因| 维生素b2吃多了有什么副作用| 雾里看花是什么意思| iu是什么意思| 大头虾是什么意思| 血燥吃什么好| 吃什么食物降尿酸最快| 户口分户需要什么条件| 螺旋ct检查什么| 晚上做噩梦是什么原因| gender什么意思| 胸口长痘是什么原因| 木耳菜是什么菜| 超体2什么时候上映| 什么样的人容易得脑瘤| 2005属什么| 类风湿要吃什么药| 女人排卵期什么时候| 普外科是什么科| 鼻炎不能吃什么食物| 为什么感冒吃冰棒反而好了| 为什么结婚| 嬗变什么意思| 中天是什么意思| 大宝是什么意思| 押韵是什么意思| 什么的树枝| 狗篮子什么意思| 专车是什么意思| 宠幸是什么意思| 什么是放疗治疗| reald厅什么意思| 口吃是什么意思| a股是什么| 思维敏捷是什么意思| 铁剂不能与什么同服| 蚕豆是什么豆| 低迷是什么意思| 芥花油是什么油| 微信附近的人都是些什么人| 什么是cosplay| 梦见死去的亲人是什么意思| 涌泉穴在什么位置| 震卦代表什么| 心电图p波代表什么| 耄耋之年是什么意思| vsd是什么意思| 补脾吃什么好| 蚱蜢吃什么食物| 7月23日是什么日子| diamond是什么牌子| 怀孕腿抽筋是因为什么原因引起的| 出岫是什么意思| 喝酒前吃什么不会醉| 透明质酸是什么| 窦性心律不齐是什么原因引起的| 吃粽子是什么节日| mb什么意思| 梦见女儿结婚是什么意思| 胸前有痣代表什么意思| 小孩荨麻疹吃什么药| 吃瓜群众是什么意思| 尿频是什么症状| 左手臂麻木是什么征兆| 什么的水流| 尤物是什么意思| 梦见跑步是什么意思| 疏忽是什么意思| 沐沐是什么意思| 86年属什么的生肖| 1993年出生属什么生肖| 保家仙都有什么仙| 朱元璋为什么不传位给朱棣| 酸菜鱼什么鱼最好| 口苦口干是什么原因引起的| 3个火念什么| 翡翠对人体有什么好处| 月经一个月来两次什么原因| lcp是什么意思| 北顶娘娘庙求什么灵验| 女人梦到蛇预示着什么| 石斛起什么作用| 不打破伤风针会有什么后果| 肺动脉增宽是什么意思| 什么是极差| 三十周年结婚是什么婚| 新生儿便秘吃什么好| 吃什么东西对肾好| 耵聍是什么东西| 小孩腮腺炎吃什么药| 时来运转是什么生肖| 乳腺低回声是什么意思| 三点水加分念什么| 什么居什么业| 手指甲出现竖纹是什么原因| 甲状腺肿是什么意思| 腋下淋巴结肿大挂什么科| 突然戒烟对身体有什么影响| 三元是什么意思| 决堤什么意思| 喉咙发炎吃什么食物| 文科生选什么专业| 步履匆匆的意思是什么| 宫保鸡丁宫保是指什么| 师公是什么意思| 脂肪疝是什么病| 五指毛桃长什么样| 男怕初一女怕十五是什么意思| 自贸区什么意思| 心脏造影是什么检查| 什么是气质| 死海是什么| 三合是什么意思| 影像是什么意思| 筱是什么意思| 女人什么时候是排卵期| 什么官许愿| 买房要看什么| 猪生肠是什么部位| 不满是什么意思| 什么才叫幸福| 康熙雍正乾隆是什么关系| 早上起来有痰是什么原因| 什么叫形而上学| 夏威夷果吃了有什么好处| 7月13日是什么日子| 蔓越莓是什么水果| 什么叫临床医学| 阿胶的原料是什么| cm代表什么单位| 7月22号是什么日子| 双子座女和什么座最配| 拉大便有血是什么原因| 惊恐发作是什么病| 拔罐拔出水泡是什么原因| 迁移是什么意思| 盆腔积液是什么引起的| 胆囊炎吃什么水果好| 同房后小腹疼痛是什么原因| kpl是什么意思| 肋间神经痛用什么药| 成人睡觉磨牙是什么原因| 为什么的拼音怎么写| 饱的偏旁叫什么| 额头爱出汗是什么原因| xgrq是什么烟| 吃菱角有什么好处| 布洛芬是什么药| rcc是什么意思| 肛门潮湿是什么情况| 麦冬长什么样| 解表散热什么意思| 什么都有| 澜字五行属什么| 血浆是什么颜色| 黄芪喝多了有什么副作用| 打九价是什么意思| 梦到结婚是什么预兆| 光滑念珠菌是什么意思| 艾滋病是什么引起的| 豆芽菜是什么意思| 标新立异什么意思| 1920年属什么生肖| 益安宁丸主治什么病| 读书的意义是什么| 鱼日羽念什么| 绿豆和什么相克中毒| 做深蹲有什么好处| 土地出让和划拨有什么区别| 女人阴虚火旺吃什么药| 手术后为什么要平躺6小时| 宫颈潴留囊肿是什么意思| 谷旦是什么意思| 肚子拉稀像水一样是什么情况| 1995是什么年| 85年什么命| 胸部胀疼是什么原因| 猪蹄炖什么好吃| 美女的胸长什么样| 肌酐高吃什么药好| 疣是什么原因造成的| 蹦蹦跳跳的动物是什么生肖| 纳囊是什么| 白蛋白下降是什么原因| 降钙素原检测是什么| hw是什么牌子| 牡丹什么时候开花| 鹅蛋脸适合什么样的发型| 吃什么能降尿酸| 癫痫属于什么科| 神经炎吃什么药| 澳门什么时候回归祖国| 胆红素是什么意思| 13岁属什么| 痈疡是什么意思| 什么是食品添加剂| 女性尿检能查出什么病| 喝酒有什么危害| 什么消炎药效果好| 宜夫痣是什么意思| ct是什么单位| 复刻什么意思| 吃什么能降血压最有效| 避孕套玻尿酸的作用是什么| 生是什么结构的字| 糖尿病吃什么| 干呕是什么病的前兆| 口腔溃疡缺乏什么维生素| 眼屎多用什么眼药水好| 频繁做梦是什么原因| 咳嗽吃什么水果| 腺肌症是什么原因引起的| 芒果什么品种最好吃| 户口本可以干什么坏事| 学生是什么阶级| 左心室高电压是什么意思| 土星为什么有光环| 牙齿有裂纹是什么原因| 一切尽在不言中什么意思| 覆盆子有什么作用| 补钙吃什么| 经常犯困想睡觉是什么原因| pgi2在医学是什么意思| 色泽是什么意思| 福州有什么好吃的| 什么门比较好| 什么情况下要打破伤风针| 月色真美什么意思| 什么叫原发性高血压| 奥肯能胶囊是什么药| 三七粉不适合什么人吃| 什么是口爆| 梦见女人是什么意思| 一产二产三产分别包括什么| 曲安奈德是什么药| 百度

英国男子心脏停跳后被母亲唤醒 母爱为生命延长2小时

百度   2018年法国网球公开赛将于5月21日至6月10日进行。

A permutation test (also called re-randomization test or shuffle test) is an exact statistical hypothesis test. A permutation test involves two or more samples. The (possibly counterfactual) null hypothesis is that all samples come from the same distribution . Under the null hypothesis, the distribution of the test statistic is obtained by calculating all possible values of the test statistic under possible rearrangements of the observed data. Permutation tests are, therefore, a form of resampling.

Permutation tests can be understood as surrogate data testing where the surrogate data under the null hypothesis are obtained through permutations of the original data.[1]

In other words, the method by which treatments are allocated to subjects in an experimental design is mirrored in the analysis of that design. If the labels are exchangeable under the null hypothesis, then the resulting tests yield exact significance levels; see also exchangeability. Confidence intervals can then be derived from the tests. The theory has evolved from the works of Ronald Fisher and E. J. G. Pitman in the 1930s.

Permutation tests should not be confused with randomized tests.[2]

Method

edit
?
Animation of a permutation test being computed on sets of 4 and 5 random values. The 4 values in red are drawn from one distribution, and the 5 values in blue from another; we'd like to test whether the mean values of the two distributions are different. The hypothesis is that the mean of the first distribution is higher than the mean of the second; the null hypothesis is that both groups of samples are drawn from the same distribution. There are 126 distinct ways to put 4 values into one group and 5 into another (9-choose-4 or 9-choose-5). Of these, one is per the original labeling, and the other 125 are "permutations" that generate the histogram of mean differences ? shown. The p-value of the hypothesis is estimated as the proportion of permutations that give a difference as large or larger than the difference of means of the original samples. In this example, the null hypothesis cannot be rejected at the p = 5% level.

To illustrate the basic idea of a permutation test, suppose we collect random variables ? and ? for each individual from two groups ? and ? whose sample means are ? and ?, and that we want to know whether ? and ? come from the same distribution. Let ? and ? be the sample size collected from each group. The permutation test is designed to determine whether the observed difference between the sample means is large enough to reject, at some significance level, the null hypothesis H? that the data drawn from ? is from the same distribution as the data drawn from ?.

The test proceeds as follows. First, the difference in means between the two samples is calculated: this is the observed value of the test statistic, ?.

Next, the observations of groups ? and ? are pooled, and the difference in sample means is calculated and recorded for every possible way of dividing the pooled values into two groups of size ? and ? (i.e., for every permutation of the group labels A and B). The set of these calculated differences is the exact distribution of possible differences (for this sample) under the null hypothesis that group labels are exchangeable (i.e., are randomly assigned).

The one-sided p-value of the test is calculated as the proportion of sampled permutations where the difference in means was greater than ?. The two-sided p-value of the test is calculated as the proportion of sampled permutations where the absolute difference was greater than ?. Many implementations of permutation tests require that the observed data itself be counted as one of the permutations so that the permutation p-value will never be zero.[3]

Alternatively, if the only purpose of the test is to reject or not reject the null hypothesis, one could sort the recorded differences, and then observe if ? is contained within the middle ?% of them, for some significance level ?. If it is not, we reject the hypothesis of identical probability curves at the ? significance level.

To exploit variance reduction with paired samples, a paired permutation test must be applied, see paired difference test. This is equivalent to performing a normal, unpaired permutation test, but restricting the set of valid permutations to only those which respect the paired nature of the data by forbidding both halves of any pair from being included in the same partition. In the specific but common case where the test statistic is the mean, this is also equivalent to computing a single set of differences of each pair and iterating over all of the ? sign-reversals instead of the usual partitioning approach.

Relation to parametric tests

edit

Permutation tests are a subset of non-parametric statistics. Assuming that our experimental data come from data measured from two treatment groups, the method simply generates the distribution of mean differences under the assumption that the two groups are not distinct in terms of the measured variable. From this, one then uses the observed statistic (? above) to see to what extent this statistic is special, i.e., the likelihood of observing the magnitude of such a value (or larger) if the treatment labels had simply been randomized after treatment.

In contrast to permutation tests, the distributions underlying many popular "classical" statistical tests, such as the t-test, F-test, z-test, and χ2 test, are obtained from theoretical probability distributions. Fisher's exact test is an example of a commonly used parametric test for evaluating the association between two dichotomous variables. When sample sizes are very large, the Pearson's chi-square test will give accurate results. For small samples, the chi-square reference distribution cannot be assumed to give a correct description of the probability distribution of the test statistic, and in this situation the use of Fisher's exact test becomes more appropriate.

Permutation tests exist in many situations where parametric tests do not (e.g., when deriving an optimal test when losses are proportional to the size of an error rather than its square). All simple and many relatively complex parametric tests have a corresponding permutation test version that is defined by using the same test statistic as the parametric test, but obtains the p-value from the sample-specific permutation distribution of that statistic, rather than from the theoretical distribution derived from the parametric assumption. For example, it is possible in this manner to construct a permutation t-test, a permutation ? test of association, a permutation version of Aly's test for comparing variances and so on.

The major drawbacks to permutation tests are that they

  • Can be computationally intensive and may require "custom" code for difficult-to-calculate statistics. This must be rewritten for every case.
  • Are primarily used to provide a p-value. The inversion of the test to get confidence regions/intervals requires even more computation.

Advantages

edit

Permutation tests exist for any test statistic, regardless of whether or not its distribution is known. Thus one is always free to choose the statistic which best discriminates between hypothesis and alternative and which minimizes losses.

Permutation tests can be used for analyzing unbalanced designs[4] and for combining dependent tests on mixtures of categorical, ordinal, and metric data (Pesarin, 2001) [citation needed]. They can also be used to analyze qualitative data that has been quantitized (i.e., turned into numbers). Permutation tests may be ideal for analyzing quantitized data that do not satisfy statistical assumptions underlying traditional parametric tests (e.g., t-tests, ANOVA),[5] see PERMANOVA.

Before the 1980s, the burden of creating the reference distribution was overwhelming except for data sets with small sample sizes.

Since the 1980s, the confluence of relatively inexpensive fast computers and the development of new sophisticated path algorithms applicable in special situations made the application of permutation test methods practical for a wide range of problems. It also initiated the addition of exact-test options in the main statistical software packages and the appearance of specialized software for performing a wide range of uni- and multi-variable exact tests and computing test-based "exact" confidence intervals.

Limitations

edit

An important assumption behind a permutation test is that the observations are exchangeable under the null hypothesis. An important consequence of this assumption is that tests of difference in location (like a permutation t-test) require equal variance under the normality assumption. In this respect, the classic permutation t-test shares the same weakness as the classical Student's t-test (the Behrens–Fisher problem). This can be addressed in the same way the classic t-test has been extended to handle unequal variances: by employing the Welch statistic with Satterthwaite adjustment to the degrees of freedom.[6] A third alternative in this situation is to use a bootstrap-based test. Statistician Phillip Good explains the difference between permutation tests and bootstrap tests the following way: "Permutations test hypotheses concerning distributions; bootstraps test hypotheses concerning parameters. As a result, the bootstrap entails less-stringent assumptions."[7] Bootstrap tests are not exact. In some cases, a permutation test based on a properly studentized statistic can be asymptotically exact even when the exchangeability assumption is violated.[8] Bootstrap-based tests can test with the null hypothesis ? and, therefore, are suited for performing equivalence testing.

Monte Carlo testing

edit

An asymptotically equivalent permutation test can be created when there are too many possible orderings of the data to allow complete enumeration in a convenient manner. This is done by generating the reference distribution by Monte Carlo sampling, which takes a small (relative to the total number of permutations) random sample of the possible replicates. The realization that this could be applied to any permutation test on any dataset was an important breakthrough in the area of applied statistics. The earliest known references to this approach are Eden and Yates (1933) and Dwass (1957).[9][10] This type of permutation test is known under various names: approximate permutation test, Monte Carlo permutation tests or random permutation tests.[11]

After ? random permutations, it is possible to obtain a confidence interval for the p-value based on the Binomial distribution, see Binomial proportion confidence interval. For example, if after ? random permutations the p-value is estimated to be ?, then a 99% confidence interval for the true ? (the one that would result from trying all possible permutations) is ?.

On the other hand, the purpose of estimating the p-value is most often to decide whether ?, where ? is the threshold at which the null hypothesis will be rejected (typically ?). In the example above, the confidence interval only tells us that there is roughly a 50% chance that the p-value is smaller than 0.05, i.e. it is completely unclear whether the null hypothesis should be rejected at a level ?.

If it is only important to know whether ? for a given ?, it is logical to continue simulating until the statement ? can be established to be true or false with a very low probability of error. Given a bound ? on the admissible probability of error (the probability of finding that ? when in fact ? or vice versa), the question of how many permutations to generate can be seen as the question of when to stop generating permutations, based on the outcomes of the simulations so far, in order to guarantee that the conclusion (which is either ? or ?) is correct with probability at least as large as ?. (? will typically be chosen to be extremely small, e.g. 1/1000.) Stopping rules to achieve this have been developed[12] which can be incorporated with minimal additional computational cost. In fact, depending on the true underlying p-value it will often be found that the number of simulations required is remarkably small (e.g. as low as 5 and often not larger than 100) before a decision can be reached with virtual certainty.

Example tests

edit

See also

edit

Literature

edit

Original references:

  • Fisher, R.A. (1935) The Design of Experiments, New York: Hafner
  • Pitman, E. J. G. (1937) "Significance tests which may be applied to samples from any population", Royal Statistical Society Supplement, 4: 119-130 and 225-32 (parts I and II). JSTOR?2984124 JSTOR?2983647
  • Pitman, E. J. G. (1938). "Significance tests which may be applied to samples from any population. Part III. The analysis of variance test". Biometrika. 29 (3–4): 322–335. doi:10.1093/biomet/29.3-4.322.

Modern references:

Computational methods:

Current research on permutation tests

edit

References

edit
  1. ^ Moore, Jason H. "Bootstrapping, permutation testing and the method of surrogate data." Physics in Medicine & Biology 44.6 (1999): L11.
  2. ^ Onghena, Patrick (2025-08-14), Berger, Vance W. (ed.), "Randomization Tests or Permutation Tests? A Historical and Terminological Clarification", Randomization, Masking, and Allocation Concealment (1?ed.), Boca Raton, FL: Chapman and Hall/CRC, pp.?209–228, doi:10.1201/9781315305110-14, ISBN?978-1-315-30511-0, retrieved 2025-08-14
  3. ^ Phipson, Belinda; Smyth, Gordon K (2010). "Permutation p-values should never be zero: calculating exact p-values when permutations are randomly drawn". Statistical Applications in Genetics and Molecular Biology. 9 (1) 39. arXiv:1603.05766. doi:10.2202/1544-6115.1585. PMID?21044043. S2CID?10735784.
  4. ^ "Invited Articles" (PDF). Journal of Modern Applied Statistical Methods. 1 (2): 202–522. Fall 2011. Archived from the original (PDF) on May 5, 2003.
  5. ^ Collingridge, Dave S. (11 September 2012). "A Primer on Quantitized Data Analysis and Permutation Testing". Journal of Mixed Methods Research. 7 (1): 81–97. doi:10.1177/1558689812454457. S2CID?124618343.
  6. ^ Janssen, Arnold (1997). "Studentized Permutation Tests for Non-I.i.d. Hypotheses and the Generalized Behrens-Fisher Problem". Statistics & Probability Letters. 36 (1): 9–21. doi:10.1016/s0167-7152(97)00043-6.
  7. ^ Good, Phillip I. (2005). Resampling Methods: A Practical Guide to Data Analysis (3rd?ed.). Birkh?user. ISBN?978-0817643867.
  8. ^ Chung, EY; Romano, JP (2013). "Exact and asymptotically robust permutation tests". The Annals of Statistics. 41 (2): 487–507. arXiv:1304.5939. doi:10.1214/13-AOS1090.
  9. ^ Eden, T; Yates, F (1933). "On the validity of Fisher's z test when applied to an actual example of non-normal data. (With five text-figures.)". The Journal of Agricultural Science. 23 (1): 6–17. doi:10.1017/S0021859600052862. S2CID?84802682. Retrieved 3 June 2021.
  10. ^ Dwass, Meyer (1957). "Modified Randomization Tests for Nonparametric Hypotheses". Annals of Mathematical Statistics. 28 (1): 181–187. doi:10.1214/aoms/1177707045. JSTOR?2237031.
  11. ^ Thomas E. Nichols, Andrew P. Holmes (2001). "Nonparametric Permutation Tests For Functional Neuroimaging: A Primer with Examples" (PDF). Human Brain Mapping. 15 (1): 1–25. doi:10.1002/hbm.1058. hdl:2027.42/35194. PMC?6871862. PMID?11747097.
  12. ^ Gandy, Axel (2009). "Sequential implementation of Monte Carlo tests with uniformly bounded resampling risk". Journal of the American Statistical Association. 104 (488): 1504–1511. arXiv:math/0612488. doi:10.1198/jasa.2009.tm08368. S2CID?15935787.
打嗝什么原因 羊奶和牛奶有什么区别 元宵节有什么活动 什么是盆底肌 iris是什么意思啊
逆水行舟什么意思 颅压高有什么症状 窦性心律左室高电压什么意思 表面抗原阳性是什么意思 孕囊是什么
例假提前是什么原因 梦见吃油饼是什么意思 壁立千仞无欲则刚是什么意思 西地那非是什么 脚气是什么样的
婴儿吃dha有什么好处 肌酐高吃什么药 三班倒什么意思 心服口服是什么意思 梦见很多人是什么意思
蕾丝是什么意思hcv8jop4ns2r.cn 一个雨一个散念什么hcv9jop4ns5r.cn 前列腺钙化灶是什么病hcv9jop3ns9r.cn 香精是什么jasonfriends.com 改善是什么意思hcv9jop5ns3r.cn
蜻蜓为什么要点水hcv9jop4ns9r.cn 2002年属马的是什么命hcv7jop9ns0r.cn 煲排骨汤放什么材料好hcv9jop2ns1r.cn 吃完羊肉不能吃什么水果hcv8jop6ns0r.cn cea升高是什么意思hcv9jop1ns9r.cn
梦见牛是什么预兆hcv8jop9ns9r.cn lh是什么意思啊hcv8jop0ns3r.cn 发际线高的人说明什么clwhiglsz.com 看日出是什么生肖hcv9jop8ns0r.cn 7.1是什么日子hcv9jop2ns7r.cn
孩子晚上睡觉磨牙是什么原因hcv9jop5ns5r.cn 甘油三酯低有什么危害hcv7jop6ns4r.cn 今年闰六月有什么说法hcv8jop3ns3r.cn 胃看什么科室520myf.com 做b超需要挂什么科cj623037.com
百度