医院面试一般会问什么| 牙为什么会疼| 我是小姨的什么人| 吃什么可以增强记忆力| 长结节是什么原因造成的| 明星每天都吃什么| 刘邦是汉什么帝| rt是什么| 高血压可以喝什么饮料| 特应性皮炎用什么药膏| spa是什么| 葛根和什么搭配泡水好| 汗毛重的女人意味着什么| 宅基地是什么意思| 脸上出油是什么原因| fwb什么意思| 梦见吃饭是什么预兆| 一什么家| 三什么九什么成语| 什么火| 玫瑰茄和洛神花有什么区别吗| 范思哲手表什么档次| 染色体异常是什么意思| 摩羯女和什么星座最配| 宫颈ca什么意思| 脚干裂用什么药最好| 有眼屎是什么原因| 蟑螂喜欢吃什么东西| 乂是什么意思| 百忧解是什么药| 冒昧是什么意思| 脾虚是什么意思| wrangler是什么牌子| 什么是中医学| 王母娘娘叫什么名字| 眼震是什么症状| 补充镁有什么好处| 鸡肉和什么菜搭配最好| 尿黄是什么原因引起的男性| 什么是sop流程| 前列腺用什么药| 血脂高饮食应注意什么| 鼻基底用什么填充最好| 生发吃什么食物好| 黄曲霉素是什么| 胃疼喝什么能缓解疼痛| 女孩名字带什么字好听| 娃哈哈纯净水是什么水| 舌头红是什么原因| 鱼疗是什么鱼| 牙疼不能吃什么| 伏羲和女娲是什么关系| h代表什么单位| 属龙的今年要注意什么| 月经推迟7天是什么原因| 细胞是什么| 毛躁是什么意思| 酚妥拉明是什么药| k金是什么金| 抓龙筋什么意思| 人怕冷是什么原因引起的| 小意思是什么意思| 梦见手机屏幕摔碎了是什么意思| 魔芋长什么样子| 汪星人什么意思| 儿童水痘吃什么药| 马齿苋有什么功效| c肽高说明什么| 小孩子不吃饭是什么原因引起的| 勾芡是什么意思| 厄运是什么意思| 拔了尿管尿不出来有什么好办法| 医学上cr是什么意思| 孔子名什么| 婴儿蚊虫叮咬红肿用什么药| 荟萃是什么意思| 金屋藏娇定富贵是什么生肖| 舌头尖发麻是什么原因| 小肚子鼓鼓的什么原因| 什么时候开始| 扁桃体发炎吃什么药| hope是什么意思啊| 鄂尔多斯为什么叫鬼城| 不能喝酒是什么原因| 什么叫溶血| 散光跟近视有什么区别| 狮子男和什么星座最配| 小孩肛门瘙痒什么原因| 手掉皮是缺什么维生素| 吃什么记忆力增强| 日加匀念什么| 什么什么自语| 民族是什么意思| 胃炎吃什么药| 准备好了吗时刻准备着是什么歌| 宝宝大便酸臭味是什么原因| 口吃什么意思| 淋巴结是什么东西| 天克地冲是什么意思| 81年属什么的| 牙龈肿痛吃什么中成药| 2022年是什么生肖年| 小孩容易出汗是什么原因| 怀孕嗜睡什么时候开始| 孕妇缺碘吃什么补最快| 一喝水就尿多是什么原因| 吃什么能帮助睡眠| 甲状腺肿大挂什么科| 月经期后是什么期| 巽是什么意思| 什么果不能吃| herry是什么意思| 男扮女装叫什么| lafuma是什么牌子| 年柱比肩是什么意思| 喉咙不舒服吃什么水果好| 什么硬币最值钱| 什么地眨眼| 上不来气吃什么药好使| 日本艺伎是干什么的| 985211大学是什么意思| 吃什么排出全身毒素| 致意是什么意思| 殆什么意思| 紫癜是一种什么病| 富贵包是什么| 什么叫甲状腺| 沙拉是什么| 野兔子吃什么| 原汤化原食什么意思| 多种维生素什么时候吃效果最好| 特效是什么意思| 猫吃什么| 股癣用什么药膏效果最好| 什么是有氧运动包括哪些| 萎缩性胃炎什么意思| 从什么时候开始| 舌头肿大是什么原因引起的| 就不告诉你就不告诉你是什么儿歌| 流星是什么| 什么是气短| 耳石症有什么症状| 孕妇感冒挂什么科| 女性阴部痒是什么原因| 汉语什么意思| 相机hdr功能是什么意思| 办什么厂比较好| 硅对人体有什么危害| 腱鞘炎在什么位置| 永无止境是什么意思| 7月份可以种什么菜| 路旁土命什么意思| 打下巴用什么玻尿酸最好| 中药学是干什么的| 蟑螂中药名称叫什么| 中药学是什么| 汗蒸有什么好处和功效| 什么饮料健康| 男生手淫有什么危害| 侯亮平是什么级别| bred是什么意思| 宫颈糜烂用什么药最好| cfu是什么意思| 爱做梦是什么原因应该怎样调理| 吃芒果有什么坏处| 喝豆浆有什么好处| 胆囊胆固醇结晶是什么| 舌头肿了是什么原因| 傲慢什么意思| 弥陀是什么意思| 想飞上天和太阳肩并肩是什么歌| 董卓字什么| 蜜枣是什么枣做的| 什么牌子的山地车好骑又不贵| 疣是一种什么病| 出汗太多吃什么药好| 无菌性前列腺炎吃什么药效果好| 梦到吃螃蟹是什么意思| 历久弥新什么意思| 胸腔积液吃什么药最有效| bebe是什么意思| 屎黄色是什么颜色| 菩提子是什么| 孕妇吃什么鱼对胎儿好| 什么药化痰效果最好| 粉色是什么颜色| 吃什么保护眼睛| 疱疹用什么药可以根治| 壮志凌云是什么生肖| 日单是什么意思| 痰核流注什么意思| 空鼻症是什么| 夏天出汗多是什么原因| 通宵是什么意思| 米线是用什么做的| 阴道炎用什么药| 脑委缩有什么症状| 百香果是什么季节的| 喝栀子茶有什么好处| 贫血吃什么食物最好| c反应蛋白是什么| 甲功七项挂什么科| 天月二德是什么意思| 7月6日是什么节日| 什么是职业道德| 乌龟吃什么东西| 儿童身高矮小挂什么科| 双手脱皮是什么原因引起的| 什么茶最好喝| 四月是什么星座| 158是什么意思| 什么是马上风| hca是什么意思| 妇科炎症吃什么消炎药效果好| 豌豆的什么不能吃| 虱目鱼在大陆叫什么| o型血与b型血生的孩子是什么血型| 解脲脲原体阳性是什么| 天天喝豆浆有什么好处和坏处| 邪祟是什么意思| 12月15日什么星座| 什么地摇动| 985和211是什么意思| 血糖高应该吃什么水果| o型血和什么血型容易溶血| 枸杞什么季节成熟| 投诉与举报有什么区别| 汐字五行属什么| 夏季摆摊卖什么好| 切除扁桃体有什么好处和坏处| 为什么家里有蟑螂| bmi是什么意思| 西兰花和什么菜搭配| na是什么| 归脾丸和健脾丸有什么区别| 太作了是什么意思| 西瓜不能和什么一起吃| 俄罗斯的货币叫什么| 尿隐血弱阳性是什么意思| 中性粒细胞低说明什么| 常吃阿司匹林有什么副作用| 移徙是什么意思| 单男是什么意思| 杀生电影讲的什么意思| 语素是什么| 黄瓜有什么好处| od什么意思| 创伤急救的原则是什么| 武松打的是什么虎| 鬼玺是什么| 疟疾病是什么病| 睾丸扭转是什么导致的| 什么样的笑容| 屁股上的骨头叫什么骨| 射的快吃什么药| 什么是疝气| 品行是什么意思| 房速是什么意思| 抗战纪念日为什么是9月3日| 包皮溃烂是什么原因| 化疗是什么| 12月7号是什么星座| 中性是什么意思| 冰淇淋是什么做的| 百度

黄山云海、日出、雾凇多景齐现 壮丽景观美如画

百度 也有的将分类名改为吞云吐雾冲上云霄及神仙草这样的代号。

Multivariate statistics is a subdivision of statistics encompassing the simultaneous observation and analysis of more than one outcome variable, i.e., multivariate random variables. Multivariate statistics concerns understanding the different aims and background of each of the different forms of multivariate analysis, and how they relate to each other. The practical application of multivariate statistics to a particular problem may involve several types of univariate and multivariate analyses in order to understand the relationships between variables and their relevance to the problem being studied.

In addition, multivariate statistics is concerned with multivariate probability distributions, in terms of both

  • how these can be used to represent the distributions of observed data;
  • how they can be used as part of statistical inference, particularly where several different quantities are of interest to the same analysis.

Certain types of problems involving multivariate data, for example simple linear regression and multiple regression, are not usually considered to be special cases of multivariate statistics because the analysis is dealt with by considering the (univariate) conditional distribution of a single outcome variable given the other variables.

Multivariate analysis

edit

Multivariate analysis (MVA) is based on the principles of multivariate statistics. Typically, MVA is used to address situations where multiple measurements are made on each experimental unit and the relations among these measurements and their structures are important.[1] A modern, overlapping categorization of MVA includes:[1]

Multivariate analysis can be complicated by the desire to include physics-based analysis to calculate the effects of variables for a hierarchical "system-of-systems". Often, studies that wish to use multivariate analysis are stalled by the dimensionality of the problem. These concerns are often eased through the use of surrogate models, highly accurate approximations of the physics-based code. Since surrogate models take the form of an equation, they can be evaluated very quickly. This becomes an enabler for large-scale MVA studies: while a Monte Carlo simulation across the design space is difficult with physics-based codes, it becomes trivial when evaluating surrogate models, which often take the form of response-surface equations.

Types of analysis

edit

Many different models are used in MVA, each with its own type of analysis:

  1. Multivariate analysis of variance (MANOVA) extends the analysis of variance to cover cases where there is more than one dependent variable to be analyzed simultaneously; see also Multivariate analysis of covariance (MANCOVA).
  2. Multivariate regression attempts to determine a formula that can describe how elements in a vector of variables respond simultaneously to changes in others. For linear relations, regression analyses here are based on forms of the general linear model. Some suggest that multivariate regression is distinct from multivariable regression, however, that is debated and not consistently true across scientific fields.[2]
  3. Principal components analysis (PCA) creates a new set of orthogonal variables that contain the same information as the original set. It rotates the axes of variation to give a new set of orthogonal axes, ordered so that they summarize decreasing proportions of the variation.
  4. Factor analysis is similar to PCA but allows the user to extract a specified number of synthetic variables, fewer than the original set, leaving the remaining unexplained variation as error. The extracted variables are known as latent variables or factors; each one may be supposed to account for covariation in a group of observed variables.
  5. Canonical correlation analysis finds linear relationships among two sets of variables; it is the generalised (i.e. canonical) version of bivariate[3] correlation.
  6. Redundancy analysis[4] (RDA) is similar to canonical correlation analysis but allows the user to derive a specified number of synthetic variables from one set of (independent) variables that explain as much variance as possible in another (independent) set. It is a multivariate analogue of regression.[5]
  7. Correspondence analysis (CA), or reciprocal averaging, finds (like PCA) a set of synthetic variables that summarise the original set. The underlying model assumes chi-squared dissimilarities among records (cases).
  8. Canonical (or "constrained") correspondence analysis (CCA) for summarising the joint variation in two sets of variables (like redundancy analysis); combination of correspondence analysis and multivariate regression analysis. The underlying model assumes chi-squared dissimilarities among records (cases).
  9. Multidimensional scaling comprises various algorithms to determine a set of synthetic variables that best represent the pairwise distances between records. The original method is principal coordinates analysis (PCoA; based on PCA).
  10. Discriminant analysis, or canonical variate analysis, attempts to establish whether a set of variables can be used to distinguish between two or more groups of cases.
  11. Linear discriminant analysis (LDA) computes a linear predictor from two sets of normally distributed data to allow for classification of new observations.
  12. Clustering systems assign objects into groups (called clusters) so that objects (cases) from the same cluster are more similar to each other than objects from different clusters.
  13. Recursive partitioning creates a decision tree that attempts to correctly classify members of the population based on a dichotomous dependent variable.
  14. Artificial neural networks extend regression and clustering methods to non-linear multivariate models.
  15. Statistical graphics such as tours, parallel coordinate plots, scatterplot matrices can be used to explore multivariate data.
  16. Simultaneous equations models involve more than one regression equation, with different dependent variables, estimated together.
  17. Vector autoregression involves simultaneous regressions of various time series variables on their own and each other's lagged values.
  18. Principal response curves analysis (PRC) is a method based on RDA that allows the user to focus on treatment effects over time by correcting for changes in control treatments over time.[6]
  19. Iconography of correlations consists in replacing a correlation matrix by a diagram where the “remarkable” correlations are represented by a solid line (positive correlation), or a dotted line (negative correlation).

Dealing with incomplete data

edit

It is very common that in an experimentally acquired set of data the values of some components of a given data point are missing. Rather than discarding the whole data point, it is common to "fill in" values for the missing components, a process called "imputation".[7]

Important probability distributions

edit

There is a set of probability distributions used in multivariate analyses that play a similar role to the corresponding set of distributions that are used in univariate analysis when the normal distribution is appropriate to a dataset. These multivariate distributions are:

The Inverse-Wishart distribution is important in Bayesian inference, for example in Bayesian multivariate linear regression. Additionally, Hotelling's T-squared distribution is a multivariate distribution, generalising Student's t-distribution, that is used in multivariate hypothesis testing.

History

edit

C.R. Rao made significant contributions to multivariate statistical theory throughout his career, particularly in the mid-20th century. One of his key works is the book titled "Advanced Statistical Methods in Biometric Research," published in 1952. This work laid the foundation for many concepts in multivariate statistics.[8] Anderson's 1958 textbook, An Introduction to Multivariate Statistical Analysis,[9] educated a generation of theorists and applied statisticians; Anderson's book emphasizes hypothesis testing via likelihood ratio tests and the properties of power functions: admissibility, unbiasedness and monotonicity.[10][11]

MVA was formerly discussed solely in the context of statistical theories, due to the size and complexity of underlying datasets and its high computational consumption. With the dramatic growth of computational power, MVA now plays an increasingly important role in data analysis and has wide application in Omics fields.

Applications

edit

Software and tools

edit

There are an enormous number of software packages and other tools for multivariate analysis, including:

See also

edit

References

edit
  1. ^ a b Olkin, I.; Sampson, A. R. (2025-08-14), "Multivariate Analysis: Overview", in Smelser, Neil J.; Baltes, Paul B. (eds.), International Encyclopedia of the Social & Behavioral Sciences, Pergamon, pp.?10240–10247, ISBN?9780080430768, retrieved 2025-08-14
  2. ^ Hidalgo, B; Goodman, M (2013). "Multivariate or multivariable regression?". Am J Public Health. 103 (1): 39–40. doi:10.2105/AJPH.2012.300897. PMC?3518362. PMID?23153131.
  3. ^ Unsophisticated analysts of bivariate Gaussian problems may find useful a crude but accurate method of accurately gauging probability by simply taking the sum S of the N residuals' squares, subtracting the sum Sm at minimum, dividing this difference by Sm, multiplying the result by (N - 2) and taking the inverse anti-ln of half that product.
  4. ^ Series, Developed and maintained by the contributors of the QCBS R. Workshop. Chapter 6 Redundancy analysis | Workshop 10: Advanced Multivariate Analyses in R. {{cite book}}: |first= has generic name (help)
  5. ^ Van Den Wollenberg, Arnold L. (1977). "Redundancy analysis an alternative for canonical correlation analysis". Psychometrika. 42 (2): 207–219. doi:10.1007/BF02294050.
  6. ^ ter Braak, Cajo J.F. & ?milauer, Petr (2012). Canoco reference manual and user's guide: software for ordination (version 5.0), p292. Microcomputer Power, Ithaca, NY.
  7. ^ J.L. Schafer (1997). Analysis of Incomplete Multivariate Data. Chapman & Hall/CRC. ISBN?978-1-4398-2186-2.
  8. ^ Dasgupta, Anirban (2024). "C.R. Rao: Paramount statistical scientist (1920 to 2023)". Proceedings of the National Academy of Sciences. 121 (9): e2321318121. Bibcode:2024PNAS..12121318D. doi:10.1073/pnas.2321318121. PMC?10907269. PMID?38377193.
  9. ^ T.W. Anderson (1958) An Introduction to Multivariate Analysis, New York: Wiley ISBN?0471026409; 2e (1984) ISBN?0471889873; 3e (2003) ISBN?0471360910
  10. ^ Sen, Pranab Kumar; Anderson, T. W.; Arnold, S. F.; Eaton, M. L.; Giri, N. C.; Gnanadesikan, R.; Kendall, M. G.; Kshirsagar, A. M.; et?al. (June 1986). "Review: Contemporary Textbooks on Multivariate Statistical Analysis: A Panoramic Appraisal and Critique". Journal of the American Statistical Association. 81 (394): 560–564. doi:10.2307/2289251. ISSN?0162-1459. JSTOR?2289251.(Pages 560–561)
  11. ^ Schervish, Mark J. (November 1987). "A Review of Multivariate Analysis". Statistical Science. 2 (4): 396–413. doi:10.1214/ss/1177013111. ISSN?0883-4237. JSTOR?2245530.
  12. ^ Huang, Biwei; Low, Charles Jia Han; Xie, Feng; Glymour, Clark; Zhang, Kun (2025-08-14). "Latent Hierarchical Causal Structure Discovery with Rank Constraints". arXiv.org. Retrieved 2025-08-14.
  13. ^ "Multivariate Regression Analysis | Stata Data Analysis Examples". stats.oarc.ucla.edu. Retrieved 2025-08-14.
  14. ^ CRAN has details on the packages available for multivariate data analysis

Further reading

edit
  • Johnson, Richard A.; Wichern, Dean W. (2007). Applied Multivariate Statistical Analysis (Sixth?ed.). Prentice Hall. ISBN?978-0-13-187715-3.
  • KV Mardia; JT Kent; JM Bibby (1979). Multivariate Analysis. Academic Press. ISBN?0-12-471252-5.
  • A. Sen, M. Srivastava, Regression Analysis — Theory, Methods, and Applications, Springer-Verlag, Berlin, 2011 (4th printing).
  • Cook, Swayne (2007). Interactive Graphics for Data Analysis.
  • Malakooti, B. (2013). Operations and Production Systems with Multiple Objectives. John Wiley & Sons.
  • T. W. Anderson, An Introduction to Multivariate Statistical Analysis, Wiley, New York, 1958.
  • KV Mardia; JT Kent & JM Bibby (1979). Multivariate Analysis. Academic Press. ISBN?978-0124712522. (M.A. level "likelihood" approach)
  • Feinstein, A. R. (1996) Multivariable Analysis. New Haven, CT: Yale University Press.
  • Hair, J. F. Jr. (1995) Multivariate Data Analysis with Readings, 4th ed. Prentice-Hall.
  • Schafer, J. L. (1997) Analysis of Incomplete Multivariate Data. CRC Press. (Advanced)
  • Sharma, S. (1996) Applied Multivariate Techniques. Wiley. (Informal, applied)
  • Izenman, Alan J. (2008). Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning. Springer Texts in Statistics. New York: Springer-Verlag. ISBN?9780387781884.
  • Tinsley, Howard E. A.; Brown, Steven D., eds. (2000). Handbook of Applied Multivariate Statistics and Mathematical Modeling. Academic Press. doi:10.1016/B978-0-12-691360-6.X5000-9. ISBN?978-0-12-691360-6.
edit
鸽子吃什么粮食 细胞是由什么构成的 饭前饭后吃药有什么区别 肌酐高吃什么药 什么样的刘胡兰
儿童头晕挂什么科 南京为什么那么多梧桐树 印度是什么人种 正桃花是什么意思 2月24是什么星座
佩戴貔貅有什么讲究与禁忌 梦见烧纸钱是什么意思 小鸟进屋有什么预兆吗 安属于五行属什么 成人补锌吃什么药
说梦话是什么原因引起的 柔然人是现在的什么人 为什么不建议小孩吃罗红霉素 散光有什么症状 什么牌子的洗发水好
行李是什么意思hcv8jop7ns8r.cn 黄粱是什么意思hcv9jop4ns1r.cn 小肚子发胀是什么原因女性hcv9jop2ns2r.cn 燃眉之急是什么意思hcv7jop9ns0r.cn 脚裂口子是什么原因hcv8jop9ns6r.cn
人乳头瘤病毒16型阳性是什么意思hcv8jop4ns0r.cn 取环挂什么科室hcv8jop3ns8r.cn studio什么牌子cj623037.com 鱼石脂是什么hcv8jop3ns9r.cn 晕车为什么读第四声hcv8jop8ns4r.cn
脑梗塞用什么药效果好hcv8jop6ns4r.cn 意会是什么意思hcv8jop8ns6r.cn 近五行属什么hcv8jop1ns1r.cn 惜字如金是什么意思hcv8jop6ns7r.cn animal什么意思hcv9jop0ns0r.cn
混动是什么意思hcv8jop4ns4r.cn 胎盘低置需要注意什么hcv8jop5ns5r.cn 体检需要带什么xinjiangjialails.com 血管狭窄吃什么药hcv9jop3ns4r.cn 吉祥如意是什么意思hcv8jop2ns0r.cn
百度