冬至广东吃什么| 梦见吐痰是什么意思| 1993属什么生肖| 蛋白质是什么食物| 100mg是什么意思| 尿白细胞十一是什么意思| ul是什么单位| 什么的脑袋| 门特是什么意思| 地中海贫血有什么影响| 一根葱十分钟什么意思| 鱼油有什么功效和作用| 阀值是什么意思| 和硕是什么意思| 腮腺炎什么症状| 无料案内所是什么意思| ddp是什么化疗药| 男性尿频是什么问题| 1970年属狗是什么命| 什么的蘑菇| 糖尿病人能喝什么饮料| 三高人群适合吃什么| 临床医学是什么| 物理意义是什么意思| ecco什么牌子| 秀禾服是什么意思| 做提肛运动有什么好处| 入盆是什么意思| 河豚吃什么食物| 香芋是什么| 男性尿很黄是什么原因| 胎监是检查什么的| 什么津津| 小孩吃榴莲有什么好处| 即视感是什么意思| 一个丝一个鸟读什么| 为什么会长闭口粉刺| 感恩节吃什么| 闺蜜过生日送什么礼物好| 冲击波治疗有什么效果| development是什么意思| 什么药治咳嗽最好| 焦虑症用什么药好| 什么时候入伏| 重庆有什么特产| 什么东西含铅| 睡醒口干口苦是什么原因| 自省是什么意思| hobbs是什么牌子| 蜘蛛喜欢吃什么| 偷鸡不成蚀把米什么意思| 精湛是什么意思| 梦到黄鳝是什么意思| 欠佳是什么意思| 舌中间有裂纹是什么原因| 黄精长什么样| 为什么晚上不能倒垃圾| 土生金是什么意思| 飞机杯是什么东西| 蜘蛛侠叫什么名字| 立冬和冬至什么区别| 前列腺钙化是什么原因引起的| 黯淡是什么意思| 小孩老是咬手指甲是什么原因| o和b型生的孩子是什么血型| 为什么口臭| 睡眠不好用什么泡脚| 幽门螺旋杆菌有什么症状| 阑尾炎属于什么科室| 腋下有异味是什么原因导致的| 1922年属什么生肖| 做梦掉牙齿是什么预兆| 鲤鱼旗的含义是什么| 眼睛做激光手术有什么后遗症| logo中文是什么意思| 颈动脉挂什么科| 嘌呤是什么物质| 1939年属什么生肖| 周星驰什么星座| 尘螨是什么| 04年是什么生肖| 木生什么| 气得什么| 打粉是什么意思| cnn是什么意思| 心电图低电压什么意思| 冻干粉是什么| 脚指甲盖凹凸不平是什么原因| 今年农历是什么年| 甲亢吃什么食物好| 为什么会有痛经| 手肿是什么原因| 罐肠什么意思| 海柳什么颜色最贵的| 水牛背满月脸是什么病| 蓝莓什么季节成熟| 中联办是什么级别| 政委什么级别| 俞伯牙摔琴谢知音摔的是什么乐器| 胃消化不好吃什么调理| 吃了小龙虾不能吃什么| 农历七月初六是什么星座| 41年属什么生肖| 什么是流食| 女人肝胆湿热吃什么药| 83年属什么| 什么的松果| 检查是否怀孕要挂什么科| 和尚命是什么意思| 怕冷吃什么药| 经常喝苏打水有什么好处和坏处| 口比念什么| 儿童看小鸡挂什么科| 女性备孕吃什么养卵泡| 省委巡视组组长什么级别| 猫咪呕吐吃什么药| 1965属什么生肖| 三月五号是什么星座| edf是什么意思| 什么情况下需要会诊| 全员加速中什么时候播| 为什么不能空腹喝豆浆| 三色线分别代表什么| 舒字属于五行属什么| 煲什么汤含蛋白质高| 奇妙的什么| 什么的舞台| 章鱼的血是什么颜色| 男人有腰窝意味着什么| 胃打嗝是什么原因| 右边脸疼是什么原因| 吃中药不能吃什么| 孕妇梦见棺材是什么征兆| 黄金是什么生肖| 50岁眼睛模糊吃什么好| 吸入甲醛会有什么症状| 湿疹长什么样图片| 月经十多天不干净是什么原因| 你喜欢我什么| 凌晨3点多是什么时辰| 国药准字h代表什么| 前是什么偏旁| 不置可否什么意思| 将军是什么级别| 醋有什么功效和作用| 汆水是什么意思| 孕早期不能吃什么| 梦见青蛙是什么预兆| 体检转氨酶高是什么原因| 用维生素e擦脸有什么好处和坏处| 脚趾抽筋是什么原因引起的| 女生什么时候最容易怀孕| 株连九族是什么意思| 必修是什么意思| 量程是什么| y谷氨酰基转移酶高是什么原因| 蛇为什么会咬人| adhd是什么病| 看守所和拘留所有什么区别| quake是什么意思| 供血不足吃什么药好| 洗脑是什么意思| 呸是什么意思| 乳房胀痛吃什么药| 鱼子酱为什么那么贵| 胰腺炎为什么血糖高| 琬字五行属什么| 什么鱼做酸菜鱼最好吃| 长期过敏是什么原因| 吃什么祛斑| 心慌出虚汗是什么原因| 拜阿司匹林和阿司匹林有什么区别| 全身痒但是身上什么都没有| 小孩经常流鼻血是什么原因| 血压高有什么危害| 放生鱼有什么好处| 什么行什么什么| 智利说什么语言| 转折是什么意思| 什么是羊蝎子| 美国为什么有两块土地| 液基细胞学检查是什么| 瘘管是什么症状| 胎停是什么意思| 疯狂动物城里的狐狸叫什么| 造影检查对身体有什么伤害| 什么的玉米| 黑色车牌是什么车| 头晕头重昏昏沉沉是什么原因| 橄榄绿是什么颜色| joeone是什么牌子| 胳膊疼是什么原因| 肿标五项查的是什么| 草字头加西念什么| 低蛋白血症吃什么最快| 今天什么日子老黄历| 梦见买棺材是什么征兆| 孩子吃什么能长高| 不遗余力什么意思| 奎字五行属什么| 男生肚子疼是什么原因| 智齿什么时候长| 人为什么会抑郁| 桃子有什么营养| 孕妇适合吃什么零食| 睡觉老是做梦是什么原因| nsa是什么意思| 脚趾第二个比第一个长有什么说法| 人工授精是什么意思| 什么是埋线双眼皮| 生理盐水和食用盐水有什么区别| 慢心律又叫什么药| 什么饮料能解酒| 痔疮吃什么药| 淋巴炎吃什么药效果好| 湾湾是什么意思| 等闲识得东风面下一句是什么| 2倍是什么意思| 艾灸是什么| 怀孕吃叶酸片有什么用| 东北属于什么气候| 前列腺炎吃什么消炎药好| 上海副市长什么级别| 看见蛇有什么预兆| 金针菇不能和什么一起吃| 岳云鹏为什么这么火| 纳米是什么| 体重指数是什么意思| 白酒兑什么饮料最好喝| 水瓶座有什么特点| 浅表性胃炎吃什么药| 实操是什么意思| 以纯属于什么档次| 梅尼埃综合症是什么病| 做脑ct对人体有什么危害| 7.11是什么日子| 女性绝经有什么征兆| 伤风流鼻涕吃什么药好| 肌酸激酶偏高吃什么药| 空调买什么牌子好| chemical是什么意思| 缪在姓氏中读什么| hct是什么意思| 1959年属什么生肖| fw什么意思| 男人硬不起来是什么原因| 火车无座是什么意思| 南宁晚上有什么好玩的地方| 睡觉口干舌燥什么原因| 施食是什么意思| 阴道有异味用什么药| 全身冰凉是什么原因| 泌尿系统感染什么症状| fast什么意思| ne医学上是什么意思| 身上总是痒是什么原因| 今天吃什么随机| 西米是什么做的| 失联是什么意思| 黄原胶是什么| 舌苔厚腻是什么原因| 下海是什么意思| 过敏性哮喘吃什么药| 咀嚼食用是什么意思| 百度

发现者(股票代码834426)新三板上市最新公告列表

百度 中美双向贸易和投资能达到今天的规模,证明两国对话合作是有效的。

In computing and mathematics, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, the latter being called the modulus of the operation.

Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.[1]

For example, the expression "5 mod 2" evaluates to 1, because 5 divided by 2 has a quotient of 2 and a remainder of 1, while "9 mod 3" would evaluate to 0, because 9 divided by 3 has a quotient of 3 and a remainder of 0.

Although typically performed with a and n both being integers, many computing systems now allow other types of numeric operands. The range of values for an integer modulo operation of n is 0 to n ? 1. a mod 1 is always 0.

When exactly one of a or n is negative, the basic definition breaks down, and programming languages differ in how these values are defined.

Variants of the definition

edit

In mathematics, the result of the modulo operation is an equivalence class, and any member of the class may be chosen as representative; however, the usual representative is the least positive residue, the smallest non-negative integer that belongs to that class (i.e., the remainder of the Euclidean division).[2] However, other conventions are possible. Computers and calculators have various ways of storing and representing numbers; thus their definition of the modulo operation depends on the programming language or the underlying hardware.

In nearly all computing systems, the quotient q and the remainder r of a divided by ? satisfy the following conditions:

This still leaves a sign ambiguity if the remainder is non-zero: two possible choices for the remainder occur, one negative and the other positive; that choice determines which of the two consecutive quotients must be used to satisfy equation (1). In number theory, the positive remainder is always chosen, but in computing, programming languages choose depending on the language and the signs of a or n.[a] Standard Pascal and ALGOL 68, for example, give a positive remainder (or 0) even for negative divisors, and some programming languages, such as C90, leave it to the implementation when either of n or a is negative (see the table under §?In programming languages for details). Some systems leave a modulo 0 undefined, though others define it as a.

  • ?
    ? Quotient (q) and ? remainder (r) as functions of dividend (a), using truncated division

    Many implementations use truncated division, for which the quotient is defined by

    ?

    where ? is the integral part function (rounding toward zero), i.e. the truncation to zero significant digits. Thus according to equation (1), the remainder has the same sign as the dividend a so can take 2|n| ? 1 values:

    ?
  • ?
    Quotient and remainder using floored division

    Donald Knuth[3] promotes floored division, for which the quotient is defined by

    ?

    where ? is the floor function (rounding down). Thus according to equation (1), the remainder has the same sign as the divisor n:

    ?
  • ?
    Quotient and remainder using Euclidean division

    Raymond T. Boute[4] promotes Euclidean division, for which the non-negative remainder ? is defined by

    ?. (Emphasis added.)

    Under this definition, we can say the following about the quotient ?:

    ?

    where sgn is the sign function, ? is the floor function (rounding down), and ? are rational numbers.

    Equivalently, one may instead define the quotient ? as follows:

    ?

    where ? is the ceiling function (rounding up). Thus according to equation (1), the remainder ? is non-negative:

    ?
  • ?
    Quotient and remainder using rounded division

    Common Lisp and IEEE 754 use rounded division, for which the quotient is defined by

    ?

    where round is the round function (rounding half to even). Thus according to equation (1), the remainder falls between ? and ?, and its sign depends on which side of zero it falls to be within these boundaries:

    ?
  • ?
    Quotient and remainder using ceiling division

    Common Lisp also uses ceiling division, for which the quotient is defined by

    ?

    where ?? is the ceiling function (rounding up). Thus according to equation (1), the remainder has the opposite sign of that of the divisor:

    ?

If both the dividend and divisor are positive, then the truncated, floored, and Euclidean definitions agree. If the dividend is positive and the divisor is negative, then the truncated and Euclidean definitions agree. If the dividend is negative and the divisor is positive, then the floored and Euclidean definitions agree. If both the dividend and divisor are negative, then the truncated and floored definitions agree.

However, truncated division satisfies the identity ?.[5][6]

Notation

edit

Some calculators have a mod() function button, and many programming languages have a similar function, expressed as mod(a, n), for example. Some also support expressions that use "%", "mod", or "Mod" as a modulo or remainder operator, such as a?% n or a mod n.

For environments lacking a similar function, any of the three definitions above can be used.

Common pitfalls

edit

When the result of a modulo operation has the sign of the dividend (truncated definition), it can lead to surprising mistakes.

For example, to test if an integer is odd, one might be inclined to test if the remainder by 2 is equal to 1:

bool is_odd(int n) {
    return n % 2 == 1;
}

But in a language where modulo has the sign of the dividend, that is incorrect, because when n (the dividend) is negative and odd, n mod 2 returns ?1, and the function returns false.

One correct alternative is to test that the remainder is not 0 (because remainder 0 is the same regardless of the signs):

bool is_odd(int n) {
    return n % 2 != 0;
}

Or with the binary arithmetic:

bool is_odd(int n) {
    return n & 1;
}

Performance issues

edit

Modulo operations might be implemented such that a division with a remainder is calculated each time. For special cases, on some hardware, faster alternatives exist. For example, the modulo of powers of 2 can alternatively be expressed as a bitwise AND operation (assuming x is a positive integer, or using a non-truncating definition):

x?% 2n == x & (2n - 1)

Examples:

x?% 2 == x & 1
x?% 4 == x & 3
x?% 8 == x & 7

In devices and software that implement bitwise operations more efficiently than modulo, these alternative forms can result in faster calculations.[7]

Compiler optimizations may recognize expressions of the form expression?% constant where constant is a power of two and automatically implement them as expression & (constant-1), allowing the programmer to write clearer code without compromising performance. This simple optimization is not possible for languages in which the result of the modulo operation has the sign of the dividend (including C), unless the dividend is of an unsigned integer type. This is because, if the dividend is negative, the modulo will be negative, whereas expression & (constant-1) will always be positive. For these languages, the equivalence x?% 2n == x < 0?? x | ~(2n - 1)?: x & (2n - 1) has to be used instead, expressed using bitwise OR, NOT and AND operations.

Optimizations for general constant-modulus operations also exist by calculating the division first using the constant-divisor optimization.

Properties (identities)

edit

Some modulo operations can be factored or expanded similarly to other mathematical operations. This may be useful in cryptography proofs, such as the Diffie–Hellman key exchange. The properties involving multiplication, division, and exponentiation generally require that a and n are integers.

  • Identity:
  • Inverse:
  • Distributive:
    • (a + b) mod n = [(a mod n) + (b mod n)] mod n.
    • ab mod n = [(a mod n)(b mod n)] mod n.
  • Division (definition): ?a/b? mod n = [(a mod n)(b?1 mod n)] mod n, when the right hand side is defined (that is when b and n are coprime), and undefined otherwise.
  • Inverse multiplication: [(ab mod n)(b?1 mod n)] mod n = a mod n.

In programming languages

edit

In addition, many computer systems provide a divmod functionality, which produces the quotient and the remainder at the same time. Examples include the x86 architecture's IDIV instruction, the C programming language's div() function, and Python's divmod() function.

Generalizations

edit

Modulo with offset

edit

Sometimes it is useful for the result of a modulo n to lie not between 0 and n ? 1, but between some number d and d + n ? 1. In that case, d is called an offset and d = 1 is particularly common.

There does not seem to be a standard notation for this operation, so let us tentatively use a modd n. We thus have the following definition:[60] x = a modd n just in case dxd + n ? 1 and x mod n = a mod n. Clearly, the usual modulo operation corresponds to zero offset: a mod n = a mod0 n.

The operation of modulo with offset is related to the floor function as follows:

?

To see this, let ?. We first show that x mod n = a mod n. It is in general true that (a + bn) mod n = a mod n for all integers b; thus, this is true also in the particular case when ?; but that means that ?, which is what we wanted to prove. It remains to be shown that dxd + n ? 1. Let k and r be the integers such that a ? d = kn + r with 0 ≤ rn ? 1 (see Euclidean division). Then ?, thus ?. Now take 0 ≤ rn ? 1 and add d to both sides, obtaining dd + rd + n ? 1. But we've seen that x = d + r, so we are done.

The modulo with offset a modd n is implemented in Mathematica as Mod[a, n, d]?.[60]

Implementing other modulo definitions using truncation

edit

Despite the mathematical elegance of Knuth's floored division and Euclidean division, it is generally much more common to find a truncated division-based modulo in programming languages. Leijen provides the following algorithms for calculating the two divisions given a truncated integer division:

/* Euclidean and Floored divmod, in the style of C's ldiv() */
typedef struct {
  /* This structure is part of the C stdlib.h, but is reproduced here for clarity */
  long int quot;
  long int rem;
} ldiv_t;

/* Euclidean division */
inline ldiv_t ldivE(long numer, long denom) {
  /* The C99 and C++11 languages define both of these as truncating. */
  long q = numer / denom;
  long r = numer % denom;
  if (r < 0) {
    if (denom > 0) {
      q = q - 1;
      r = r + denom;
    } else {
      q = q + 1;
      r = r - denom;
    }
  }
  return (ldiv_t){.quot = q, .rem = r};
}

/* Floored division */
inline ldiv_t ldivF(long numer, long denom) {
  long q = numer / denom;
  long r = numer % denom;
  if ((r > 0 && denom < 0) || (r < 0 && denom > 0)) {
    q = q - 1;
    r = r + denom;
  }
  return (ldiv_t){.quot = q, .rem = r};
}

For both cases, the remainder can be calculated independently of the quotient, but not vice versa. The operations are combined here to save screen space, as the logical branches are the same.

See also

edit

Notes

edit
  1. ^ Mathematically, these two choices are but two of the infinite number of choices available for the inequality satisfied by a remainder.
  2. ^ a b Argument order reverses, i.e., α|ω computes ?, the remainder when dividing ω by α.
  3. ^ C99 and C++11 define the behavior of % to be truncated.[9] The standards before then leave the behavior implementation-defined.[10]
  4. ^ Divisor must be positive, otherwise undefined.
  5. ^ As discussed by Boute, ISO Pascal's definitions of div and mod do not obey the Division Identity of D = d · (D / d) + D?% d, and are thus fundamentally broken.
  6. ^ Perl usually uses arithmetic modulo operator that is machine-independent. For examples and exceptions, see the Perl documentation on multiplicative operators.[45]

References

edit
  1. ^ Weisstein, Eric W. "Congruence". Wolfram MathWorld. Retrieved 2025-08-14.
  2. ^ Caldwell, Chris. "residue". Prime Glossary. Retrieved August 27, 2020.
  3. ^ Knuth, Donald. E. (1972). The Art of Computer Programming. Addison-Wesley.
  4. ^ Boute, Raymond T. (April 1992). "The Euclidean definition of the functions div and mod". ACM Transactions on Programming Languages and Systems. 14 (2). ACM Press (New York, NY, USA): 127–144. doi:10.1145/128861.128862. hdl:1854/LU-314490. S2CID?8321674.
  5. ^ Peterson, Doctor (5 July 2001). "Mod Function and Negative Numbers". Math Forum - Ask Dr. Math. Archived from the original on 2025-08-14. Retrieved 22 October 2019.
  6. ^ "Ada 83 LRM, Sec 4.5: Operators and Expression Evaluation". archive.adaic.com. Retrieved 2025-08-14.
  7. ^ Horvath, Adam (July 5, 2012). "Faster division and modulo operation - the power of two".
  8. ^ a b ISO/IEC 8652:2012 - Information technology — Programming languages — Ada. ISO, IEC. 2012. sec. 4.5.5 Multiplying Operators.
  9. ^ "C99 specification (ISO/IEC 9899:TC2)" (PDF). 2025-08-14. sec. 6.5.5 Multiplicative operators. Retrieved 16 August 2018.
  10. ^ ISO/IEC 14882:2003: Programming languages – C++. International Organization for Standardization (ISO), International Electrotechnical Commission (IEC). 2003. sec. 5.6.4. the binary?% operator yields the remainder from the division of the first expression by the second. .... If both operands are nonnegative then the remainder is nonnegative; if not, the sign of the remainder is implementation-defined
  11. ^ ISO/IEC 9899:1990: Programming languages – C. ISO, IEC. 1990. sec. 7.5.6.4. The fmod function returns the value x - i * y, for some integer i such that, if y is nonzero, the result has the same sign as x and magnitude less than the magnitude of y.
  12. ^ a b dotnet-bot. "Math.IEEERemainder(Double, Double) Method (System)". Microsoft Learn. Retrieved 2025-08-14.
  13. ^ "clojure.core - Clojure v1.10.3 API documentation". clojure.github.io. Retrieved 2025-08-14.
  14. ^ "clojure.core - Clojure v1.10.3 API documentation". clojure.github.io. Retrieved 2025-08-14.
  15. ^ a b ISO/IEC JTC 1/SC 22/WG 4 (January 2023). ISO/IEC 1989:2023 – Programming language COBOL. ISO.{{cite book}}: CS1 maint: numeric names: authors list (link)
  16. ^ CoffeeScript operators
  17. ^ ISO/IEC JTC 1/SC 22 (February 2012). ISO/IEC 23271:2012 — Information technology — Common Language Infrastructure (CLI). ISO. §§ III.3.55–56.{{cite book}}: CS1 maint: numeric names: authors list (link)
  18. ^ "mod() - CSS: Cascading Style Sheets | MDN". developer.mozilla.org. 2025-08-14. Retrieved 2025-08-14.
  19. ^ "rem() - CSS: Cascading Style Sheets | MDN". developer.mozilla.org. 2025-08-14. Retrieved 2025-08-14.
  20. ^ "Expressions - D Programming Language". dlang.org. Retrieved 2025-08-14.
  21. ^ "operator?% method - num class - dart:core library - Dart API". api.dart.dev. Retrieved 2025-08-14.
  22. ^ "remainder method - num class - dart:core library - Dart API". api.dart.dev. Retrieved 2025-08-14.
  23. ^ "Kernel — Elixir v1.11.3". hexdocs.pm. Retrieved 2025-08-14.
  24. ^ "Integer — Elixir v1.11.3". hexdocs.pm. Retrieved 2025-08-14.
  25. ^ "Basics - core 1.0.5". package.elm-lang.org. Retrieved 2025-08-14.
  26. ^ "Basics - core 1.0.5". package.elm-lang.org. Retrieved 2025-08-14.
  27. ^ "Erlang -- math". erlang.org. Retrieved 2025-08-14.
  28. ^ ANSI (28 January 1987). Programming Languages — Full BASIC. New York: American National Standards Institute. § 5.4.4. X modulo Y, i.e., X-Y*INT(X/Y).
  29. ^ ANSI (28 January 1987). Programming Languages — Full BASIC. New York: American National Standards Institute. § 5.4.4. The remainder function, i.e., X-Y*IP(X/Y).
  30. ^ "GLSL Language Specification, Version 4.50.7" (PDF). section 5.9 Expressions. If both operands are non-negative, then the remainder is non-negative. Results are undefined if one or both operands are negative.
  31. ^ "GLSL Language Specification, Version 4.50.7" (PDF). section 8.3 Common Functions.
  32. ^ "The Go Programming Language Specification - The Go Programming Language". go.dev. Retrieved 2025-08-14.
  33. ^ "math package - math - pkg.go.dev". pkg.go.dev. Retrieved 2025-08-14.
  34. ^ "big package - math/big - pkg.go.dev". pkg.go.dev. Retrieved 2025-08-14.
  35. ^ "big package - math/big - pkg.go.dev". pkg.go.dev. Retrieved 2025-08-14.
  36. ^ a b "6 Predefined Types and Classes". www.haskell.org. Retrieved 2025-08-14.
  37. ^ "Operators". Microsoft. 30 June 2021. Retrieved 2025-08-14. The?% operator is defined only in cases where either both sides are positive or both sides are negative. Unlike C, it also operates on floating-point data types, as well as integers.
  38. ^ "Mathematics · The Julia Language". docs.julialang.org. Retrieved 2025-08-14.
  39. ^ "Mathematics · The Julia Language". docs.julialang.org. Retrieved 2025-08-14.
  40. ^ "rem - Kotlin Programming Language". Kotlin. Retrieved 2025-08-14.
  41. ^ "mod - Kotlin Programming Language". Kotlin. Retrieved 2025-08-14.
  42. ^ "Chapter 3: The NASM Language". NASM - The Netwide Assembler version 2.15.05.
  43. ^ "OCaml library?: Stdlib". ocaml.org. Retrieved 2025-08-14.
  44. ^ "OCaml library?: Stdlib". ocaml.org. Retrieved 2025-08-14.
  45. ^ Perl documentation
  46. ^ "PHP: Arithmetic Operators - Manual". www.php.net. Retrieved 2025-08-14.
  47. ^ "PHP: fmod - Manual". www.php.net. Retrieved 2025-08-14.
  48. ^ "EuclideanRing".
  49. ^ QuantumWriter. "Expressions". docs.microsoft.com. Retrieved 2025-08-14.
  50. ^ "R: Arithmetic Operators". search.r-project.org. Retrieved 2025-08-14.
  51. ^ "F32 - Rust".
  52. ^ a b r6rs.org
  53. ^ "Shell Command Language". pubs.opengroup.org. Retrieved 2025-08-14.
  54. ^ "Solidity Documentation". docs.soliditylang.org. Retrieved 2025-08-14.
  55. ^ "Apple Developer Documentation". developer.apple.com. Retrieved 2025-08-14.
  56. ^ "Apple Developer Documentation". developer.apple.com. Retrieved 2025-08-14.
  57. ^ "Apple Developer Documentation". developer.apple.com. Retrieved 2025-08-14.
  58. ^ a b Rossberg, Andreas, ed. (19 April 2022). "WebAssembly Core Specification: Version 2.0". World Wide Web Consortium. § 4.3.2 Integer Operations.
  59. ^ "Zig Documentation". Zig Programming Language. Retrieved 2025-08-14.
  60. ^ a b "Mod". Wolfram Language & System Documentation Center. Wolfram Research. 2020. Retrieved April 8, 2020.
edit
梦见自己生二胎是什么意思 身体突然消瘦是什么原因 眼睛为什么会散光 白骨精是什么动物 紧急避孕药有什么副作用
喝醉是什么感觉 虎与什么生肖相合 什么是体液 做牛排用什么部位的牛肉 大利月小利月什么意思
喉炎雾化用什么药 除湿气吃什么 耷拉的近义词是什么 菟丝子是什么 深情什么意思
胆是起什么作用的 草芽是什么 身上长黑痣是什么原因 十九朵玫瑰花代表什么意思 美味佳肴是什么意思
喝茶失眠是什么原因hcv8jop7ns7r.cn 胆气不足吃什么中成药hcv7jop9ns4r.cn 怀挺是什么意思jingluanji.com 全身酸痛失眠什么原因bfb118.com pp材质是什么inbungee.com
与生俱来是什么意思hcv9jop4ns7r.cn 吃完虾不能吃什么水果hcv8jop7ns4r.cn 肠癌吃什么hcv9jop6ns4r.cn 肠道门诊看什么病hcv9jop1ns5r.cn 低血压吃什么水果hcv7jop5ns6r.cn
哈密瓜什么时候成熟hcv7jop9ns1r.cn 蛇胆疮是什么原因引起的hcv7jop9ns4r.cn 血脂血糖高吃什么食物好hcv9jop7ns5r.cn 属牛的五行属性是什么hcv8jop0ns6r.cn 蛇最怕什么东西cl108k.com
房门什么颜色好看hcv9jop6ns1r.cn 拔牙之后可以吃什么hcv9jop4ns8r.cn 头皮发痒用什么洗发水hcv8jop4ns2r.cn 海参头数是什么意思adwl56.com 2000年是属什么生肖hcv9jop2ns1r.cn
百度