in77是什么意思| 姨妈发黑量少什么原因| 什么时候才能够| 哈工大全称是什么| 什么叫做亚健康| 老年人晚上夜尿多是什么原因| 澳门什么时候回归祖国| 投食是什么意思| 凌空什么什么| 为什么睡觉会张嘴| 什么是kpi| 大腿前侧肌肉叫什么| 彩虹有什么颜色| 白癜风用什么药| 什么一惊| 卤什么东西好吃| 什么是肝阳上亢| 粉色代表什么| 神机妙算是什么生肖| 肾脏彩超能检查出什么| 什么叫方差| 为什么会得糖尿病| 今年是什么属相| 2月什么星座的| 海蛎子是什么| 六安瓜片是什么茶| 硬不起来吃什么好| 决明子有什么功效| 秦始皇原名叫什么名字| 9月20日是什么星座| 上午11点是什么时辰| 心得安又叫什么名| 肝肾阴虚是什么原因引起的| c3是什么意思| 禅让制是什么意思| 五指姑娘是什么意思| 胸有成竹是什么生肖| 包皮什么意思| 肽对人体有什么好处| 香蕉什么时候成熟| AUx是什么品牌| 杭州有什么| 长公主是皇上的什么人| 什么回忆| 什么人适合喝三七粉| 特别想睡觉是什么原因| 蜂蜜什么时间喝最好| 麝香保心丸治什么病| 为什么早上起来眼睛肿| 什么什么迷人的成语| 六十天打一字是什么字| 仙居杨梅什么时候上市| 什么是双性人| 玫瑰花和什么一起泡水喝好| 脂肪肝吃什么最好| 乐五行属什么| 抠脚大汉什么意思| 戒指戴在食指什么意思| 汗毛重的女人意味着什么| 珍馐是什么意思| 变化无常的意思是什么| 夕阳无限好只是近黄昏是什么意思| 8月30号是什么星座| 胸闷气短吃什么特效药| 血管明显是什么原因| 人怕冷是什么原因引起的| 耳鸣有什么症状| 什么球不能踢| 唐氏筛查高风险是什么意思| 绝育手术对女性有什么危害| 有朝一日是什么生肖| 肺主治节是什么意思| 仓鼠可以吃什么| ECG是什么| 瓞是什么意思| 什么地摇动| 顶天立地是什么意思| 间皮瘤是什么病| 土地出让和划拨有什么区别| 一月25号是什么星座| 小儿割包皮挂什么科| 三颗星是什么军衔| 病理切片是什么意思| 火车无座是什么意思| 胃病四联疗法是什么药| 脚臭用什么洗效果最好| dsa是什么意思| 散粉和粉饼有什么区别| 胃酸不能吃什么食物| 夏令时什么时候开始和结束| 下压高是什么原因引起的| 丝瓜和什么相克| 27虚岁属什么生肖| 脚一直出汗是什么原因| 6.14什么星座| 声色什么| 偏头痛吃什么药最好| 一声叹息是什么意思| 阑尾在什么位置| 1111是什么意思| 怀孕有什么现象| 肺癌靶向治疗是什么意思| 甲醛中毒吃什么药解毒| 百年好合是什么意思| 黄柏的功效与作用是什么| canon什么牌子| 撤退性出血是什么| 8月20号什么星座| 打眼是什么意思| 颈椎痛吃什么药| 胆囊壁毛糙吃什么药效果好| 一什么好字| 松鼠尾巴有什么作用| 膝盖酸疼是什么原因| 梦见修坟墓是什么预兆| 胃病喝什么茶养胃| 万事顺意是什么意思| 糖异生是什么意思| 海螺姑娘是什么意思| kenzo属于什么档次| 老鼠疣长什么样子图片| 肺大泡是什么原因造成的| 有编制是什么意思| 潘字五行属什么| 什么主筋骨| 特需门诊是什么意思| 荷塘月色是什么菜| 血压表什么牌子的好最准确最耐用| 酒后打嗝是什么原因| 东星斑为什么这么贵| 舍本逐末什么意思| 胎位loa是什么位置| 试金石是什么意思| 人中附近长痘痘什么原因| 虹视是什么意思| 儿童坐飞机需要带什么证件| 后脚跟疼是什么原因| 牙痛用什么药| hcg高是什么原因| 总胆红素偏高说明什么| 鸡精吃多了有什么危害| 车抛锚是什么意思| 吃什么血脂降的最快| 肠痈是什么病| 梦遗是什么意思| 洋葱不能和什么食物一起吃| 张学友和张家辉什么关系| 吃什么能拉肚子| 艾灸起水泡是什么原因| 口腔溃疡吃什么好| 女生排卵期在什么时候| 五月十一是什么星座| 胳肢窝疼痛是什么原因| 阿尔茨海默症是什么症状| 硒有什么功效和作用| 肝内血管瘤是什么意思| 张什么舞什么| 时柱金舆是什么意思| 跑完步想吐是什么原因| 过期化妆品属于什么垃圾| 腋毛有什么作用| 月经不停吃什么药止血效果比较好| 猫咖是什么| 蝉是什么| 满族不吃什么肉| 梦见织毛衣是什么意思| 伤口发炎用什么药| 什么饮料解暑| 一什么牛奶| 书字五行属什么的| 铠字五行属什么| 乳腺病是什么意思| 气短挂什么科| 浓鼻涕吃什么药| 什么是脑梗| 78岁属什么| 劣迹斑斑是什么意思| 袖珍是什么意思| 什么是黄油| 后会有期什么意思| 2.10是什么星座| 阳寿是什么意思| 最难写的字是什么| 爱心是什么牌子| 呼吸胸口疼是什么原因| 防蓝光是什么意思| 尿偏红色是什么原因| 胃烧心是怎么回事吃什么药| 用你的手解我的锁是什么歌| 西洋参有什么用| 辅警和协警有什么区别| 心脏房颤是什么症状| 流产后吃什么水果最佳| 早上打嗝是什么原因呢| 急性肠胃炎吃什么药好| 为什么一直打嗝| 总胆红素偏高吃什么药| 57属什么生肖| 榧读什么| 什么是甲亢| 发达国家的标准是什么| 文武双全是什么意思| 香客是什么意思| 脑震荡什么症状| 小儿磨牙是什么原因引起的| 96年属什么生肖| 血肌酐是什么意思| 孕妇能喝什么茶| raf是什么意思| 六娃的能力是什么| 风寒咳嗽吃什么药| 肚子上长毛是什么原因| 怕吹空调是什么原因| 安溪铁观音属于什么茶| 下面瘙痒用什么药膏| 1984年属什么| 听天的动物是什么生肖| 缺钾是什么原因引起| 坚韧不拔是什么生肖| 女人更年期什么症状| 缺钾吃什么补得最快| 嘴唇发麻是什么病兆| 创伤急救的原则是什么| 美国为什么叫美国| 慢性胆囊炎是什么原因引起的| 猫的胡须有什么用处| 双向情感障碍症是什么病| bata鞋属于什么档次| 避孕套上的油是什么油| 什么东西燃烧脂肪最快| 眼睛老是肿着是什么原因造成的| 肉蒲团是什么意思| 什么洗面奶最好用排行第一| 丑是什么意思| 五蕴指什么| 吃什么对脾胃有好处| 党内警告处分有什么影响| 前白蛋白低是什么原因| 八月十四是什么星座| 切什么意思| 胃胀吃什么好| 霉菌性阴炎用什么药止痒效果好| 贵人多忘事是什么意思| cashmere是什么意思| 7.7什么星座| 海姆立克急救法是什么| 大腿根部是什么部位| 鸡毛菜是什么菜| 下午2点是什么时辰| 子宫和宫颈有什么区别| 诺迪康胶囊治什么病| 暴饮暴食容易得什么病| 女生问你喜欢她什么怎么回答| 95年属什么生肖| 吃黄瓜有什么好处和坏处| 梦到吃肉是什么意思周公解梦| 全科医生是什么意思| 哪吒为什么叫哪吒| 做梦梦见马是什么意思| 流鼻血吃什么| 大水牛是什么意思| 口什么心什么| 娇小是什么意思| 同房后为什么会出血| 百度

bbd是什么意思

(Redirected from Experimental design)
百度   通知指出,高校要认真执行有关特殊类型招生工作要求,严格报名条件、材料审查、学校考核、监督制约和造假惩处,严厉打击证书、发明、专利、论文买卖和造假行为。

The design of experiments (DOE),[1] also known as experiment design or experimental design, is the design of any task that aims to describe and explain the variation of information under conditions that are hypothesized to reflect the variation. The term is generally associated with experiments in which the design introduces conditions that directly affect the variation, but may also refer to the design of quasi-experiments, in which natural conditions that influence the variation are selected for observation.

Design of experiments with full factorial design (left), response surface with second-degree polynomial (right)

In its simplest form, an experiment aims at predicting the outcome by introducing a change of the preconditions, which is represented by one or more independent variables, also referred to as "input variables" or "predictor variables." The change in one or more independent variables is generally hypothesized to result in a change in one or more dependent variables, also referred to as "output variables" or "response variables." The experimental design may also identify control variables that must be held constant to prevent external factors from affecting the results. Experimental design involves not only the selection of suitable independent, dependent, and control variables, but planning the delivery of the experiment under statistically optimal conditions given the constraints of available resources. There are multiple approaches for determining the set of design points (unique combinations of the settings of the independent variables) to be used in the experiment.

Main concerns in experimental design include the establishment of validity, reliability, and replicability. For example, these concerns can be partially addressed by carefully choosing the independent variable, reducing the risk of measurement error, and ensuring that the documentation of the method is sufficiently detailed. Related concerns include achieving appropriate levels of statistical power and sensitivity.

Correctly designed experiments advance knowledge in the natural and social sciences and engineering, with design of experiments methodology recognised as a key tool in the successful implementation of a Quality by Design (QbD) framework.[2] Other applications include marketing and policy making. The study of the design of experiments is an important topic in metascience.

History

edit

Statistical experiments, following Charles S. Peirce

edit

A theory of statistical inference was developed by Charles S. Peirce in "Illustrations of the Logic of Science" (1877–1878)[3] and "A Theory of Probable Inference" (1883),[4] two publications that emphasized the importance of randomization-based inference in statistics.[5]

Randomized experiments

edit

Charles S. Peirce randomly assigned volunteers to a blinded, repeated-measures design to evaluate their ability to discriminate weights.[6][7][8][9] Peirce's experiment inspired other researchers in psychology and education, which developed a research tradition of randomized experiments in laboratories and specialized textbooks in the 1800s.[6][7][8][9]

Optimal designs for regression models

edit

Charles S. Peirce also contributed the first English-language publication on an optimal design for regression models in 1876.[10] A pioneering optimal design for polynomial regression was suggested by Gergonne in 1815. In 1918, Kirstine Smith published optimal designs for polynomials of degree six (and less).[11][12]

Sequences of experiments

edit

The use of a sequence of experiments, where the design of each may depend on the results of previous experiments, including the possible decision to stop experimenting, is within the scope of sequential analysis, a field that was pioneered[13] by Abraham Wald in the context of sequential tests of statistical hypotheses.[14] Herman Chernoff wrote an overview of optimal sequential designs,[15] while adaptive designs have been surveyed by S. Zacks.[16] One specific type of sequential design is the "two-armed bandit", generalized to the multi-armed bandit, on which early work was done by Herbert Robbins in 1952.[17]

Fisher's principles

edit

A methodology for designing experiments was proposed by Ronald Fisher, in his innovative books: The Arrangement of Field Experiments (1926) and The Design of Experiments (1935). Much of his pioneering work dealt with agricultural applications of statistical methods. As a mundane example, he described how to test the lady tasting tea hypothesis, that a certain lady could distinguish by flavour alone whether the milk or the tea was first placed in the cup. These methods have been broadly adapted in biological, psychological, and agricultural research.[18]

Comparison
In some fields of study it is not possible to have independent measurements to a traceable metrology standard. Comparisons between treatments are much more valuable and are usually preferable, and often compared against a scientific control or traditional treatment that acts as baseline.
Randomization
Random assignment is the process of assigning individuals at random to groups or to different groups in an experiment, so that each individual of the population has the same chance of becoming a participant in the study. The random assignment of individuals to groups (or conditions within a group) distinguishes a rigorous, "true" experiment from an observational study or "quasi-experiment".[19] There is an extensive body of mathematical theory that explores the consequences of making the allocation of units to treatments by means of some random mechanism (such as tables of random numbers, or the use of randomization devices such as playing cards or dice). Assigning units to treatments at random tends to mitigate confounding, which makes effects due to factors other than the treatment to appear to result from the treatment.
The risks associated with random allocation (such as having a serious imbalance in a key characteristic between a treatment group and a control group) are calculable and hence can be managed down to an acceptable level by using enough experimental units. However, if the population is divided into several subpopulations that somehow differ, and the research requires each subpopulation to be equal in size, stratified sampling can be used. In that way, the units in each subpopulation are randomized, but not the whole sample. The results of an experiment can be generalized reliably from the experimental units to a larger statistical population of units only if the experimental units are a random sample from the larger population; the probable error of such an extrapolation depends on the sample size, among other things.
Statistical replication
Measurements are usually subject to variation and measurement uncertainty; thus they are repeated and full experiments are replicated to help identify the sources of variation, to better estimate the true effects of treatments, to further strengthen the experiment's reliability and validity, and to add to the existing knowledge of the topic.[20] However, certain conditions must be met before the replication of the experiment is commenced: the original research question has been published in a peer-reviewed journal or widely cited, the researcher is independent of the original experiment, the researcher must first try to replicate the original findings using the original data, and the write-up should state that the study conducted is a replication study that tried to follow the original study as strictly as possible.[21]
Blocking
?
Blocking (right)
Blocking is the non-random arrangement of experimental units into groups (blocks) consisting of units that are similar to one another. Blocking reduces known but irrelevant sources of variation between units and thus allows greater precision in the estimation of the source of variation under study.
Orthogonality
?
Example of orthogonal factorial design
Orthogonality concerns the forms of comparison (contrasts) that can be legitimately and efficiently carried out. Contrasts can be represented by vectors and sets of orthogonal contrasts are uncorrelated and independently distributed if the data are normal. Because of this independence, each orthogonal treatment provides different information to the others. If there are T treatments and T ? 1 orthogonal contrasts, all the information that can be captured from the experiment is obtainable from the set of contrasts.
Multifactorial experiments
Use of multifactorial experiments instead of the one-factor-at-a-time method. These are efficient at evaluating the effects and possible interactions of several factors (independent variables). Analysis of experiment design is built on the foundation of the analysis of variance, a collection of models that partition the observed variance into components, according to what factors the experiment must estimate or test.

Example

edit
?

This example of design experiments is attributed to Harold Hotelling, building on examples from Frank Yates.[22][23][15] The experiments designed in this example involve combinatorial designs.[24]

Weights of eight objects are measured using a pan balance and set of standard weights. Each weighing measures the weight difference between objects in the left pan and any objects in the right pan by adding calibrated weights to the lighter pan until the balance is in equilibrium. Each measurement has a random error. The average error is zero; the standard deviations of the probability distribution of the errors is the same number σ on different weighings; errors on different weighings are independent. Denote the true weights by

?

We consider two different experiments:

  1. Weigh each object in one pan, with the other pan empty. Let Xi be the measured weight of the object, for i?=?1,?...,?8.
  2. Do the eight weighings according to the following schedule—a weighing matrix:
?
Let Yi be the measured difference for i = 1, ..., 8. Then the estimated value of the weight θ1 is
?
Similar estimates can be found for the weights of the other items:
?

The question of design of experiments is: which experiment is better?

The variance of the estimate X1 of θ1 is σ2 if we use the first experiment. But if we use the second experiment, the variance of the estimate given above is σ2/8. Thus the second experiment gives us 8 times as much precision for the estimate of a single item, and estimates all items simultaneously, with the same precision. What the second experiment achieves with eight would require 64 weighings if the items are weighed separately. However, note that the estimates for the items obtained in the second experiment have errors that correlate with each other.

Many problems of the design of experiments involve combinatorial designs, as in this example and others.[24]

Avoiding false positives

edit

False positive conclusions, often resulting from the pressure to publish or the author's own confirmation bias, are an inherent hazard in many fields.[25]

Use of double-blind designs can prevent biases potentially leading to false positives in the data collection phase. When a double-blind design is used, participants are randomly assigned to experimental groups but the researcher is unaware of what participants belong to which group. Therefore, the researcher can not affect the participants' response to the intervention.[26]

Experimental designs with undisclosed degrees of freedom[jargon] are a problem,[27] in that they can lead to conscious or unconscious "p-hacking": trying multiple things until you get the desired result. It typically involves the manipulation – perhaps unconsciously – of the process of statistical analysis and the degrees of freedom until they return a figure below the p<.05 level of statistical significance.[28][29]

P-hacking can be prevented by preregistering researches, in which researchers have to send their data analysis plan to the journal they wish to publish their paper in before they even start their data collection, so no data manipulation is possible.[30][31]

Another way to prevent this is taking a double-blind design to the data-analysis phase, making the study triple-blind, where the data are sent to a data-analyst unrelated to the research who scrambles up the data so there is no way to know which participants belong to before they are potentially taken away as outliers.[26]

Clear and complete documentation of the experimental methodology is also important in order to support replication of results.[32]

Discussion topics when setting up an experimental design

edit

An experimental design or randomized clinical trial requires careful consideration of several factors before actually doing the experiment.[33] An experimental design is the laying out of a detailed experimental plan in advance of doing the experiment. Some of the following topics have already been discussed in the principles of experimental design section:

  1. How many factors does the design have, and are the levels of these factors fixed or random?
  2. Are control conditions needed, and what should they be?
  3. Manipulation checks: did the manipulation really work?
  4. What are the background variables?
  5. What is the sample size? How many units must be collected for the experiment to be generalisable and have enough power?
  6. What is the relevance of interactions between factors?
  7. What is the influence of delayed effects of substantive factors on outcomes?
  8. How do response shifts affect self-report measures?
  9. How feasible is repeated administration of the same measurement instruments to the same units at different occasions, with a post-test and follow-up tests?
  10. What about using a proxy pretest?
  11. Are there confounding variables?
  12. Should the client/patient, researcher or even the analyst of the data be blind to conditions?
  13. What is the feasibility of subsequent application of different conditions to the same units?
  14. How many of each control and noise factors should be taken into account?

The independent variable of a study often has many levels or different groups. In a true experiment, researchers can have an experimental group, which is where their intervention testing the hypothesis is implemented, and a control group, which has all the same element as the experimental group, without the interventional element. Thus, when everything else except for one intervention is held constant, researchers can certify with some certainty that this one element is what caused the observed change. In some instances, having a control group is not ethical. This is sometimes solved using two different experimental groups. In some cases, independent variables cannot be manipulated, for example when testing the difference between two groups who have a different disease, or testing the difference between genders (obviously variables that would be hard or unethical to assign participants to). In these cases, a quasi-experimental design may be used.

Causal attributions

edit

In the pure experimental design, the independent (predictor) variable is manipulated by the researcher – that is – every participant of the research is chosen randomly from the population, and each participant chosen is assigned randomly to conditions of the independent variable. Only when this is done is it possible to certify with high probability that the reason for the differences in the outcome variables are caused by the different conditions. Therefore, researchers should choose the experimental design over other design types whenever possible. However, the nature of the independent variable does not always allow for manipulation. In those cases, researchers must be aware of not certifying about causal attribution when their design doesn't allow for it. For example, in observational designs, participants are not assigned randomly to conditions, and so if there are differences found in outcome variables between conditions, it is likely that there is something other than the differences between the conditions that causes the differences in outcomes, that is – a third variable. The same goes for studies with correlational design.

Statistical control

edit

It is best that a process be in reasonable statistical control prior to conducting designed experiments. When this is not possible, proper blocking, replication, and randomization allow for the careful conduct of designed experiments.[34] To control for nuisance variables, researchers institute control checks as additional measures. Investigators should ensure that uncontrolled influences (e.g., source credibility perception) do not skew the findings of the study. A manipulation check is one example of a control check. Manipulation checks allow investigators to isolate the chief variables to strengthen support that these variables are operating as planned.

One of the most important requirements of experimental research designs is the necessity of eliminating the effects of spurious, intervening, and antecedent variables. In the most basic model, cause (X) leads to effect (Y). But there could be a third variable (Z) that influences (Y), and X might not be the true cause at all. Z is said to be a spurious variable and must be controlled for. The same is true for intervening variables (a variable in between the supposed cause (X) and the effect (Y)), and anteceding variables (a variable prior to the supposed cause (X) that is the true cause). When a third variable is involved and has not been controlled for, the relation is said to be a zero order relationship. In most practical applications of experimental research designs there are several causes (X1, X2, X3). In most designs, only one of these causes is manipulated at a time.

Experimental designs after Fisher

edit

Some efficient designs for estimating several main effects were found independently and in near succession by Raj Chandra Bose and K. Kishen in 1940 at the Indian Statistical Institute, but remained little known until the Plackett–Burman designs were published in Biometrika in 1946. About the same time, C. R. Rao introduced the concepts of orthogonal arrays as experimental designs. This concept played a central role in the development of Taguchi methods by Genichi Taguchi, which took place during his visit to Indian Statistical Institute in early 1950s. His methods were successfully applied and adopted by Japanese and Indian industries and subsequently were also embraced by US industry albeit with some reservations.

In 1950, Gertrude Mary Cox and William Gemmell Cochran published the book Experimental Designs, which became the major reference work on the design of experiments for statisticians for years afterwards.

Developments of the theory of linear models have encompassed and surpassed the cases that concerned early writers. Today, the theory rests on advanced topics in linear algebra, algebra and combinatorics.

As with other branches of statistics, experimental design is pursued using both frequentist and Bayesian approaches: In evaluating statistical procedures like experimental designs, frequentist statistics studies the sampling distribution while Bayesian statistics updates a probability distribution on the parameter space.

Some important contributors to the field of experimental designs are C. S. Peirce, R. A. Fisher, F. Yates, R. C. Bose, A. C. Atkinson, R. A. Bailey, D. R. Cox, G. E. P. Box, W. G. Cochran, W. T. Federer, V. V. Fedorov, A. S. Hedayat, J. Kiefer, O. Kempthorne, J. A. Nelder, Andrej Pázman, Friedrich Pukelsheim, D. Raghavarao, C. R. Rao, Shrikhande S. S., J. N. Srivastava, William J. Studden, G. Taguchi and H. P. Wynn.[35]

The textbooks of D. Montgomery, R. Myers, and G. Box/W. Hunter/J.S. Hunter have reached generations of students and practitioners.[36][37][38][39][40] Furthermore, there is ongoing discussion of experimental design in the context of model building for models either static or dynamic models, also known as system identification. [41][42]

Human participant constraints

edit

Laws and ethical considerations preclude some carefully designed experiments with human subjects. Legal constraints are dependent on jurisdiction. Constraints may involve institutional review boards, informed consent and confidentiality affecting both clinical (medical) trials and behavioral and social science experiments.[43] In the field of toxicology, for example, experimentation is performed on laboratory animals with the goal of defining safe exposure limits for humans.[44] Balancing the constraints are views from the medical field.[45] Regarding the randomization of patients, "... if no one knows which therapy is better, there is no ethical imperative to use one therapy or another." (p 380) Regarding experimental design, "...it is clearly not ethical to place subjects at risk to collect data in a poorly designed study when this situation can be easily avoided...". (p 393)

See also

edit

References

edit
  1. ^ "What Is Design of Experiments (DOE)?". asq.org. American Society for Quality. Retrieved 20 February 2025.
  2. ^ "The Sequential Nature of Classical Design of Experiments | Prism". prismtc.co.uk. Retrieved 10 March 2023.
  3. ^ Peirce, Charles Sanders (1887). "Illustrations of the Logic of Science". Open Court (10 June 2014). ISBN?0812698495.
  4. ^ Peirce, Charles Sanders (1883). "A Theory of Probable Inference". In C. S. Peirce (Ed.), Studies in logic by members of the Johns Hopkins University (p. 126–181). Little, Brown and Co (1883)
  5. ^ Stigler, Stephen M. (1978). "Mathematical statistics in the early States". Annals of Statistics. 6 (2): 239–65 [248]. doi:10.1214/aos/1176344123. JSTOR?2958876. MR?0483118. Indeed, Pierce's work contains one of the earliest explicit endorsements of mathematical randomization as a basis for inference of which I am aware (Peirce, 1957, pages 216–219
  6. ^ a b Peirce, Charles Sanders; Jastrow, Joseph (1885). "On Small Differences in Sensation". Memoirs of the National Academy of Sciences. 3: 73–83.
  7. ^ a b of Hacking, Ian (September 1988). "Telepathy: Origins of Randomization in Experimental Design". Isis. 79 (3): 427–451. doi:10.1086/354775. JSTOR?234674. MR?1013489. S2CID?52201011.
  8. ^ a b Stephen M. Stigler (November 1992). "A Historical View of Statistical Concepts in Psychology and Educational Research". American Journal of Education. 101 (1): 60–70. doi:10.1086/444032. JSTOR?1085417. S2CID?143685203.
  9. ^ a b Trudy Dehue (December 1997). "Deception, Efficiency, and Random Groups: Psychology and the Gradual Origination of the Random Group Design". Isis. 88 (4): 653–673. doi:10.1086/383850. PMID?9519574. S2CID?23526321.
  10. ^ Peirce, C. S. (1876). "Note on the Theory of the Economy of Research". Coast Survey Report: 197–201., actually published 1879, NOAA PDF Eprint Archived 2 March 2017 at the Wayback Machine.
    Reprinted in Collected Papers 7, paragraphs 139–157, also in Writings 4, pp. 72–78, and in Peirce, C. S. (July–August 1967). "Note on the Theory of the Economy of Research". Operations Research. 15 (4): 643–648. doi:10.1287/opre.15.4.643. JSTOR?168276.
  11. ^ Guttorp, P.; Lindgren, G. (2009). "Karl Pearson and the Scandinavian school of statistics". International Statistical Review. 77: 64. CiteSeerX?10.1.1.368.8328. doi:10.1111/j.1751-5823.2009.00069.x. S2CID?121294724.
  12. ^ Smith, Kirstine (1918). "On the standard deviations of adjusted and interpolated values of an observed polynomial function and its constants and the guidance they give towards a proper choice of the distribution of observations". Biometrika. 12 (1–2): 1–85. doi:10.1093/biomet/12.1-2.1.
  13. ^ Johnson, N.L. (1961). "Sequential analysis: a survey." Journal of the Royal Statistical Society, Series A. Vol. 124 (3), 372–411. (pages 375–376)
  14. ^ Wald, A. (1945) "Sequential Tests of Statistical Hypotheses", Annals of Mathematical Statistics, 16 (2), 117–186.
  15. ^ a b Herman Chernoff, Sequential Analysis and Optimal Design, SIAM Monograph, 1972.
  16. ^ Zacks, S. (1996) "Adaptive Designs for Parametric Models". In: Ghosh, S. and Rao, C. R., (Eds) (1996). "Design and Analysis of Experiments," Handbook of Statistics, Volume 13. North-Holland. ISBN?0-444-82061-2. (pages 151–180)
  17. ^ Robbins, H. (1952). "Some Aspects of the Sequential Design of Experiments". Bulletin of the American Mathematical Society. 58 (5): 527–535. doi:10.1090/S0002-9904-1952-09620-8.
  18. ^ Miller, Geoffrey (2000). The Mating Mind: how sexual choice shaped the evolution of human nature, London: Heineman, ISBN?0-434-00741-2 (also Doubleday, ISBN?0-385-49516-1) "To biologists, he was an architect of the 'modern synthesis' that used mathematical models to integrate Mendelian genetics with Darwin's selection theories. To psychologists, Fisher was the inventor of various statistical tests that are still supposed to be used whenever possible in psychology journals. To farmers, Fisher was the founder of experimental agricultural research, saving millions from starvation through rational crop breeding programs." p.54.
  19. ^ Creswell, J.W. (2008), Educational research: Planning, conducting, and evaluating quantitative and qualitative research (3rd edition), Upper Saddle River, NJ: Prentice Hall. 2008, p. 300. ISBN?0-13-613550-1
  20. ^ Dr. Hani (2009). "Replication study". Archived from the original on 2 June 2012. Retrieved 27 October 2011.
  21. ^ Burman, Leonard E.; Robert W. Reed; James Alm (2010), "A call for replication studies", Public Finance Review, 38 (6): 787–793, doi:10.1177/1091142110385210, S2CID?27838472, retrieved 27 October 2011
  22. ^ Hotelling, Harold (1944). "Some Improvements in Weighing and Other Experimental Techniques". Annals of Mathematical Statistics. 15 (3): 297–306. doi:10.1214/aoms/1177731236.
  23. ^ Giri, Narayan C.; Das, M. N. (1979). Design and Analysis of Experiments. New York, N.Y: Wiley. pp.?350–359. ISBN?9780852269145.
  24. ^ a b Jack Sifri (8 December 2014). "How to Use Design of Experiments to Create Robust Designs With High Yield". youtube.com. Retrieved 11 February 2015.
  25. ^ Forstmeier, Wolfgang; Wagenmakers, Eric-Jan; Parker, Timothy H. (23 November 2016). "Detecting and avoiding likely false-positive findings – a practical guide". Biological Reviews. 92 (4): 1941–1968. doi:10.1111/brv.12315. hdl:11245.1/31f84a5b-4439-4a4c-a690-6e98354199f5. ISSN?1464-7931. PMID?27879038. S2CID?26793416.
  26. ^ a b David, Sharoon; Khandhar1, Paras B. (17 July 2023). "Double-Blind Study". StatPearls Publishing. PMID?31536248.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  27. ^ Simmons, Joseph; Leif Nelson; Uri Simonsohn (November 2011). "False-Positive Psychology: Undisclosed Flexibility in Data Collection and Analysis Allows Presenting Anything as Significant". Psychological Science. 22 (11): 1359–1366. doi:10.1177/0956797611417632. ISSN?0956-7976. PMID?22006061.
  28. ^ "Science, Trust And Psychology in Crisis". KPLU. 2 June 2014. Archived from the original on 14 July 2014. Retrieved 12 June 2014.
  29. ^ "Why Statistically Significant Studies Can Be Insignificant". Pacific Standard. 4 June 2014. Retrieved 12 June 2014.
  30. ^ Nosek, Brian A.; Ebersole, Charles R.; DeHaven, Alexander C.; Mellor, David T. (13 March 2018). "The preregistration revolution". Proceedings of the National Academy of Sciences. 115 (11): 2600–2606. Bibcode:2018PNAS..115.2600N. doi:10.1073/pnas.1708274114. ISSN?0027-8424. PMC?5856500. PMID?29531091.
  31. ^ "Pre-Registering Studies – What Is It, How Do You Do It, and Why?". www.acf.hhs.gov. Archived from the original on 29 August 2022. Retrieved 29 August 2023.
  32. ^ Chris Chambers (10 June 2014). "Physics envy: Do 'hard' sciences hold the solution to the replication crisis in psychology?". theguardian.com. Retrieved 12 June 2014.
  33. ^ Ader, Mellenberg & Hand (2008) "Advising on Research Methods: A consultant's companion"
  34. ^ Bisgaard, S (2008) "Must a Process be in Statistical Control before Conducting Designed Experiments?", Quality Engineering, ASQ, 20 (2), pp 143–176
  35. ^ Giri, Narayan C.; Das, M. N. (1979). Design and Analysis of Experiments. New York, N.Y: Wiley. pp.?53, 159, 264. ISBN?9780852269145.
  36. ^ Montgomery, Douglas (2013). Design and analysis of experiments (8th?ed.). Hoboken, NJ: John Wiley & Sons, Inc. ISBN?9781118146927.
  37. ^ Walpole, Ronald E.; Myers, Raymond H.; Myers, Sharon L.; Ye, Keying (2007). Probability & statistics for engineers & scientists (8?ed.). Upper Saddle River, NJ: Pearson Prentice Hall. ISBN?978-0131877115.
  38. ^ Myers, Raymond H.; Montgomery, Douglas C.; Vining, G. Geoffrey; Robinson, Timothy J. (2010). Generalized linear models?: with applications in engineering and the sciences (2?ed.). Hoboken, N.J.: Wiley. ISBN?978-0470454633.
  39. ^ Box, George E.P.; Hunter, William G.; Hunter, J. Stuart (1978). Statistics for Experimenters?: An Introduction to Design, Data Analysis, and Model Building. New York: Wiley. ISBN?978-0-471-09315-2.
  40. ^ Box, George E.P.; Hunter, William G.; Hunter, J. Stuart (2005). Statistics for Experimenters?: Design, Innovation, and Discovery (2?ed.). Hoboken, N.J.: Wiley. ISBN?978-0471718130.
  41. ^ Spall, J. C. (2010). "Factorial Design for Efficient Experimentation: Generating Informative Data for System Identification". IEEE Control Systems Magazine. 30 (5): 38–53. doi:10.1109/MCS.2010.937677. S2CID?45813198.
  42. ^ Pronzato, L (2008). "Optimal experimental design and some related control problems". Automatica. 44 (2): 303–325. arXiv:0802.4381. doi:10.1016/j.automatica.2007.05.016. S2CID?1268930.
  43. ^ Moore, David S.; Notz, William I. (2006). Statistics?: concepts and controversies (6th?ed.). New York: W.H. Freeman. pp.?Chapter 7: Data ethics. ISBN?9780716786368.
  44. ^ Ottoboni, M. Alice (1991). The dose makes the poison?: a plain-language guide to toxicology (2nd?ed.). New York, N.Y: Van Nostrand Reinhold. ISBN?978-0442006600.
  45. ^ Glantz, Stanton A. (1992). Primer of biostatistics (3rd?ed.). ISBN?978-0-07-023511-3.

Sources

edit
  • Peirce, C. S. (1877–1878), "Illustrations of the Logic of Science" (series), Popular Science Monthly, vols. 12–13. Relevant individual papers:
    • (1878 March), "The Doctrine of Chances", Popular Science Monthly, v. 12, March issue, pp. 604–615. Internet Archive Eprint.
    • (1878 April), "The Probability of Induction", Popular Science Monthly, v. 12, pp. 705–718. Internet Archive Eprint.
    • (1878 June), "The Order of Nature", Popular Science Monthly, v. 13, pp. 203–217.Internet Archive Eprint.
    • (1878 August), "Deduction, Induction, and Hypothesis", Popular Science Monthly, v. 13, pp. 470–482. Internet Archive Eprint.
    • (1883), "A Theory of Probable Inference", Studies in Logic, pp. 126–181, Little, Brown, and Company. (Reprinted 1983, John Benjamins Publishing Company, ISBN?90-272-3271-7)
edit
电瓶车充不进电是什么原因 汽车点火线圈坏了有什么症状 1999年出生属什么生肖 法益是什么意思 胃不消化吃什么药好
绀是什么意思 水瓶男喜欢什么样的女生 胆固醇什么意思 成什么结什么 二杠四星是什么军衔
乳果糖什么时候吃效果更佳 不痛经说明什么 胰岛素偏低是什么原因 8月14日是什么星座 脑出血什么原因引起的
五谷指的是什么 贫血不能吃什么 井什么有什么 心率高吃什么药 马超是什么生肖
什么食物利尿效果最好hcv9jop5ns8r.cn 风水宝地是什么生肖hcv8jop7ns5r.cn 什么原因得疱疹hcv8jop1ns3r.cn 阑尾炎应该挂什么科hcv7jop7ns3r.cn 低蛋白血症吃什么最快zsyouku.com
公鸡为什么会啄人hcv9jop2ns2r.cn 霜降是什么季节hcv7jop9ns9r.cn 美尼尔综合征吃什么药aiwuzhiyu.com 形同陌路是什么意思hcv7jop6ns2r.cn 四级军士长是什么级别hcv8jop2ns9r.cn
冰心的原名叫什么hcv9jop3ns6r.cn 宠物蛇吃什么食物hcv8jop0ns4r.cn 巧夺天工什么意思hcv7jop9ns5r.cn 小狗什么时候断奶jiuxinfghf.com 脑震荡挂什么科hcv9jop2ns0r.cn
三尖瓣轻度反流是什么意思hcv8jop7ns1r.cn 蝴蝶的翅膀像什么hcv7jop6ns7r.cn 卅什么意思aiwuzhiyu.com 手麻脚麻是什么原因引起的chuanglingweilai.com 甘油三酯高吃什么食物降得快hcv8jop5ns3r.cn
百度