一览无余是什么意思| 假花放在家里有什么忌讳| 女人做梦梦到蛇是什么意思| 西瓜有什么好处| 今年农历是什么年号| 擤鼻涕带血是什么原因| 胃肠道功能紊乱吃什么药| 1月10日什么星座| 胃痛吃什么好| 36岁属什么| 四面佛是什么佛| 壁虎代表什么生肖| 真菌感染用什么药| 女生喜欢什么礼物| 9月10号什么星座| 过渡句的作用是什么| 霉菌性阴炎用什么药好得快| 姝字五行属什么| 阳强易举是什么意思| 好麻吉是什么意思| 脚臭用什么药| 胸膈痞闷什么意思| 黄帝是一个什么样的人| 狗贫血吃什么补血最快| 空蝶鞍是什么意思| 始终是什么意思| 宫颈那囊什么意思| 胎儿左心室强光点是什么意思| 早餐吃什么营养又健康| 什么药对伤口愈合快| ctc是什么意思| 龙眼树上的臭虫叫什么| 区间放量是什么意思| 迁单是什么意思| 眼睑是什么意思| 戌时右眼跳是什么预兆| 酸碱度偏高是什么意思| 11月17号是什么星座| 浙江有什么旅游景点| 脚底起泡是什么原因| 身上为什么会起湿疹| 冲浪什么意思| peppa是什么意思| 钙是什么| 苏联什么时候解体| 白内障是什么| 为什么会得偏头痛| 送老师送什么礼物好| 结节性红斑是什么原因引起的| 一个金字旁一个各念什么| 星月菩提是什么材质| 金字旁土念什么字| cdf是什么意思| 解绑是什么意思| 白骨精什么意思| 胡萝卜与什么食物相克| 滑精是什么症状| 球拍状胎盘对胎儿有什么影响| 什么叫膳食纤维| 为什么一吃饭就拉肚子| 冬天喝什么茶好呢| 锑是什么| 声援是什么意思| 天王星是什么颜色| 核磁共振和ct有什么区别| 龙眼什么时候上市| 右乳导管扩张什么意思| 灰太狼是什么意思| 杀马特是什么意思| 甚好是什么意思| 城是什么生肖| 田螺小子是什么意思| 51是什么意思| 精髓是什么意思| jps是什么意思| 飘了是什么意思| 茴三硫片主治什么| hp是阳性什么意思| 牙龈疼吃什么药| 身上湿气重吃什么药| 九月十号什么星座| 细小是什么病| dunhill是什么品牌| 鲨鱼为什么不吃海豚| 2014年什么年| jio什么意思| left什么意思| 水痘擦什么药膏好得快| 什么叫造口| 属龙的守护神是什么菩萨| 什么叫矫正视力| 什么的身子| 降低压吃什么药| 包皮炎挂什么科| 咳嗽不能吃什么| 电磁炉用什么锅最好| 胖大海是什么| 10月15号是什么星座的| 高考都考什么| 室上速是什么病| 婴儿吐泡泡是什么原因| 心脏不好吃什么| 苏州市长什么级别| 什么是初吻| 什么颜色加什么颜色等于白色| 侏儒症是缺乏什么元素| 梦见黑蛇是什么意思| 慢性胃炎吃什么药| 身体发热是什么原因| 至字五行属什么| 子宫内膜3mm意味着什么| 哺乳期吃避孕药对孩子有什么影响| 绿豆汤为什么是红色的| 匪气是什么意思| 成人发烧吃什么退烧药| 扶山是什么意思| 穿山甲到底说了什么| 感冒咳嗽一直不好是什么原因| 2014属什么生肖| 冬枣是什么季节的水果| 什么是乐高| 2h是什么意思| 什么是基本养老金| 梦见别人打我是什么意思| 鸡为什么喜欢吃泡沫| 女人更年期吃什么药| 三什么一什么四字词语| 嘴唇开裂是什么原因| 闻风丧胆指什么动物| 活动是什么意思| 早泄吃什么| 戒指戴左手中指是什么意思| 东吴是现在的什么地方| 降火祛痘喝什么茶| 肛裂用什么药| 矽肺病是什么症状| 舌息心念什么| 含羞草能治什么病| 中国人在印度属于什么种姓| 柠字五行属什么| 波菜不能和什么一起吃| 真我是什么意思| r医学是什么意思| 胃出血什么症状| 梦见西红柿是什么预兆| 尿频尿急尿痛吃什么药| 痕迹是什么意思| 扁的桃子叫什么名字| 飞蛾为什么扑火| 什么食物补钾| 乔木是什么| 什么情况下喝补液盐| 水满则溢月盈则亏是什么意思| 灰指甲挂什么科室| 三黄鸡为什么那么便宜| 晒伤涂什么| 什么是爬虫| 肋骨痛挂什么科| 脚背肿是什么原因引起的| 海鲜和什么不能一起吃| 4.12是什么星座| 看不上是什么意思| sherry是什么意思| cco是什么意思| 辟谷是什么都不吃吗| 烧腊是什么| 梦见死人了是什么预兆| 中签是什么意思| 精索静脉曲张挂什么科| 花生死苗烂根用什么药| 甘心的近义词是什么| 避孕套和安全套有什么区别| 吃什么可以养肝| 怀孕一个月内有什么反应| 空窗期什么意思| 什么是双氧水| 死海是什么| 晕车吃什么药| 胎位头位是什么意思| 杏仁有什么好处| 干眼症吃什么药| 洋酒是什么酒| 转氨酶是什么意思| 各奔东西是什么意思| ye是什么意思| 膀胱炎什么症状| 润喉喝什么| 198是什么意思| 人怕出名猪怕壮是什么生肖| 红斑是什么病| 齿痕舌吃什么药| 以什么为准| eap是什么| 小学什么时候期末考试| 中期唐氏筛查查什么| 甲沟炎是什么原因引起的| 左眼皮老跳是什么原因| 九霄云外是什么生肖| 甲骨文是什么朝代的| 什么叫开门见床头| 矢车菊在中国叫什么名| 女龙配什么属相最好| 甲状腺球蛋白高是什么原因| 历经是什么意思| 蚊子爱咬什么样的人| o型血吃什么瘦的最快| 石斛起什么作用| 什么食物去湿气| 眼袋重是什么原因| 租赁费计入什么科目| 骨质增生吃什么药效果好| 脸上有痣去医院挂什么科| 男人吃什么补肾| 起鸡皮疙瘩是什么原因| 13层楼房有什么说法吗| 月经不干净是什么原因| 屋里喷什么消毒最好| 武汉有什么好玩的地方| 六月十九是什么星座| qq邮箱的格式是什么| 什么的睡觉| 什么是微单相机| 血压低吃什么| 黄鳝吃什么食物| 机能鞋是什么意思| belle什么意思| 什么食物含维生素b| 加号是什么意思| 生气过度会气出什么病| 宝批龙是什么意思| 脑供血不足是什么症状| 眼睛不舒服是什么原因引起的| 事后紧急避孕药什么时候吃有效| 见红是什么意思| 痰核是什么意思| 血气是什么意思| 龙和什么生肖相冲| 脉跳的快是什么原因| 什么饼不能吃| 怀孕抽烟对孩子有什么影响| 四个金念什么| 佛跳墙是什么菜系| 阿奇霉素治疗什么| 抑郁症什么意思| 日行千里是什么生肖| 女人出汗多是什么原因| 津液不足吃什么中成药| 脸上容易出油是什么原因| 暂告一段落是什么意思| 胃在什么位置图片| 居高临下是什么意思| 梗塞灶是什么意思| 什么立雪| 什么人不能吃猪肝| 舌头上有白苔是什么原因| 空泡蝶鞍是什么病| 梦见买鞋子是什么意思| 人生三件大事是指什么| 内角是什么意思| 促狭一笑是什么意思| 海参补什么| 咳嗽吐血是什么原因| 家人们是什么意思| 先自度其足的度是什么意思| 百度

生殖器疱疹用什么药

(Redirected from Efficient estimators)
百度 它们要求东亚国家紧缩财政,出售国家资产,结果造成了经济迅速萎缩。

In statistics, efficiency is a measure of quality of an estimator, of an experimental design,[1] or of a hypothesis testing procedure.[2] Essentially, a more efficient estimator needs fewer input data or observations than a less efficient one to achieve the Cramér–Rao bound. An efficient estimator is characterized by having the smallest possible variance, indicating that there is a small deviance between the estimated value and the "true" value in the L2 norm sense.[1]

The relative efficiency of two procedures is the ratio of their efficiencies, although often this concept is used where the comparison is made between a given procedure and a notional "best possible" procedure. The efficiencies and the relative efficiency of two procedures theoretically depend on the sample size available for the given procedure, but it is often possible to use the asymptotic relative efficiency (defined as the limit of the relative efficiencies as the sample size grows) as the principal comparison measure.

Estimators

edit

The efficiency of an unbiased estimator, T, of a parameter θ is defined as [3]

?

where ? is the Fisher information of the sample. Thus e(T) is the minimum possible variance for an unbiased estimator divided by its actual variance. The Cramér–Rao bound can be used to prove that e(T) ≤ 1.

Efficient estimators

edit

An efficient estimator is an estimator that estimates the quantity of interest in some “best possible” manner. The notion of “best possible” relies upon the choice of a particular loss function — the function which quantifies the relative degree of undesirability of estimation errors of different magnitudes. The most common choice of the loss function is quadratic, resulting in the mean squared error criterion of optimality.[4]

In general, the spread of an estimator around the parameter θ is a measure of estimator efficiency and performance. This performance can be calculated by finding the mean squared error. More formally, let T be an estimator for the parameter θ. The mean squared error of T is the value ?, which can be decomposed as a sum of its variance and bias:

?

An estimator T1 performs better than an estimator T2 if ?.[5] For a more specific case, if T1 and T2 are two unbiased estimators for the same parameter θ, then the variance can be compared to determine performance. In this case, T2 is more efficient than T1 if the variance of T2 is smaller than the variance of T1, i.e. ? for all values of θ. This relationship can be determined by simplifying the more general case above for mean squared error; since the expected value of an unbiased estimator is equal to the parameter value, ?. Therefore, for an unbiased estimator, ?, as the ? term drops out for being equal to 0.[5]

If an unbiased estimator of a parameter θ attains ? for all values of the parameter, then the estimator is called efficient.[3]

Equivalently, the estimator achieves equality in the Cramér–Rao inequality for all θ. The Cramér–Rao lower bound is a lower bound of the variance of an unbiased estimator, representing the "best" an unbiased estimator can be.

An efficient estimator is also the minimum variance unbiased estimator (MVUE). This is because an efficient estimator maintains equality on the Cramér–Rao inequality for all parameter values, which means it attains the minimum variance for all parameters (the definition of the MVUE). The MVUE estimator, even if it exists, is not necessarily efficient, because "minimum" does not mean equality holds on the Cramér–Rao inequality.

Thus an efficient estimator need not exist, but if it does, it is the MVUE.

Finite-sample efficiency

edit

Suppose { Pθ | θ ∈ Θ } is a parametric model and X = (X1, …, Xn) are the data sampled from this model. Let T = T(X) be an estimator for the parameter θ. If this estimator is unbiased (that is, E[?T?] = θ), then the Cramér–Rao inequality states the variance of this estimator is bounded from below:

?

where ? is the Fisher information matrix of the model at point θ. Generally, the variance measures the degree of dispersion of a random variable around its mean. Thus estimators with small variances are more concentrated, they estimate the parameters more precisely. We say that the estimator is a finite-sample efficient estimator (in the class of unbiased estimators) if it reaches the lower bound in the Cramér–Rao inequality above, for all θ ∈ Θ. Efficient estimators are always minimum variance unbiased estimators. However the converse is false: There exist point-estimation problems for which the minimum-variance mean-unbiased estimator is inefficient.[6]

Historically, finite-sample efficiency was an early optimality criterion. However this criterion has some limitations:

  • Finite-sample efficient estimators are extremely rare. In fact, it was proved that efficient estimation is possible only in an exponential family, and only for the natural parameters of that family.[7]
  • This notion of efficiency is sometimes restricted to the class of unbiased estimators. (Often it is not.[8]) Since there are no good theoretical reasons to require that estimators are unbiased, this restriction is inconvenient. In fact, if we use mean squared error as a selection criterion, many biased estimators will slightly outperform the “best” unbiased ones. For example, in multivariate statistics for dimension three or more, the mean-unbiased estimator, sample mean, is inadmissible: Regardless of the outcome, its performance is worse than for example the James–Stein estimator.[citation needed]
  • Finite-sample efficiency is based on the variance, as a criterion according to which the estimators are judged. A more general approach is to use loss functions other than quadratic ones, in which case the finite-sample efficiency can no longer be formulated.[citation needed][dubiousdiscuss]

As an example, among the models encountered in practice, efficient estimators exist for: the mean μ of the normal distribution (but not the variance σ2), parameter λ of the Poisson distribution, the probability p in the binomial or multinomial distribution.

Consider the model of a normal distribution with unknown mean but known variance: { Pθ = N(θ, σ2) | θR }. The data consists of n independent and identically distributed observations from this model: X = (x1, …, xn). We estimate the parameter θ using the sample mean of all observations:

?

This estimator has mean θ and variance of σ2?/?n, which is equal to the reciprocal of the Fisher information from the sample. Thus, the sample mean is a finite-sample efficient estimator for the mean of the normal distribution.

Asymptotic efficiency

edit

Asymptotic efficiency requires Consistency (statistics), asymptotically normal distribution of the estimator, and an asymptotic variance-covariance matrix no worse than that of any other estimator.[9]

Example: Median

edit

Consider a sample of size ? drawn from a normal distribution of mean ? and unit variance, i.e., ?

The sample mean, ?, of the sample ?, defined as

?

The variance of the mean, 1/N (the square of the standard error) is equal to the reciprocal of the Fisher information from the sample and thus, by the Cramér–Rao inequality, the sample mean is efficient in the sense that its efficiency is unity (100%).

Now consider the sample median, ?. This is an unbiased and consistent estimator for ?. For large ? the sample median is approximately normally distributed with mean ? and variance ?[10]

?

The efficiency of the median for large ? is thus

?

In other words, the relative variance of the median will be ?, or 57% greater than the variance of the mean – the standard error of the median will be 25% greater than that of the mean.[11]

Note that this is the asymptotic efficiency — that is, the efficiency in the limit as sample size ? tends to infinity. For finite values of ? the efficiency is higher than this (for example, a sample size of 3 gives an efficiency of about 74%).[citation needed]

The sample mean is thus more efficient than the sample median in this example. However, there may be measures by which the median performs better. For example, the median is far more robust to outliers, so that if the Gaussian model is questionable or approximate, there may advantages to using the median (see Robust statistics).

Dominant estimators

edit

If ? and ? are estimators for the parameter ?, then ? is said to dominate ? if:

  1. its mean squared error (MSE) is smaller for at least some value of ?
  2. the MSE does not exceed that of ? for any value of θ.

Formally, ? dominates ? if

?

holds for all ?, with strict inequality holding somewhere.

Relative efficiency

edit

The relative efficiency of two unbiased estimators is defined as[12]

?

Although ? is in general a function of ?, in many cases the dependence drops out; if this is so, ? being greater than one would indicate that ? is preferable, regardless of the true value of ?.

An alternative to relative efficiency for comparing estimators, is the Pitman closeness criterion. This replaces the comparison of mean-squared-errors with comparing how often one estimator produces estimates closer to the true value than another estimator.

Estimators of the mean of u.i.d. variables

edit

In estimating the mean of uncorrelated, identically distributed variables we can take advantage of the fact that the variance of the sum is the sum of the variances. In this case efficiency can be defined as the square of the coefficient of variation, i.e.,[13]

?

Relative efficiency of two such estimators can thus be interpreted as the relative sample size of one required to achieve the certainty of the other. Proof:

?

Now because ? we have ?, so the relative efficiency expresses the relative sample size of the first estimator needed to match the variance of the second.

Robustness

edit

Efficiency of an estimator may change significantly if the distribution changes, often dropping. This is one of the motivations of robust statistics – an estimator such as the sample mean is an efficient estimator of the population mean of a normal distribution, for example, but can be an inefficient estimator of a mixture distribution of two normal distributions with the same mean and different variances. For example, if a distribution is a combination of 98% N(μ, σ) and 2% N(μ, 10σ), the presence of extreme values from the latter distribution (often "contaminating outliers") significantly reduces the efficiency of the sample mean as an estimator of μ. By contrast, the trimmed mean is less efficient for a normal distribution, but is more robust (i.e., less affected) by changes in the distribution, and thus may be more efficient for a mixture distribution. Similarly, the shape of a distribution, such as skewness or heavy tails, can significantly reduce the efficiency of estimators that assume a symmetric distribution or thin tails.

Efficiency in statistics

edit

Efficiency in statistics is important because it allows the performance of various estimators to be compared. Although an unbiased estimator is usually favored over a biased one, a more efficient biased estimator can sometimes be more valuable than a less efficient unbiased estimator. For example, this can occur when the values of the biased estimator gathers around a number closer to the true value. Thus, estimator performance can be predicted easily by comparing their mean squared errors or variances.

Uses of inefficient estimators

edit

While efficiency is a desirable quality of an estimator, it must be weighed against other considerations, and an estimator that is efficient for certain distributions may well be inefficient for other distributions. Most significantly, estimators that are efficient for clean data from a simple distribution, such as the normal distribution (which is symmetric, unimodal, and has thin tails) may not be robust to contamination by outliers, and may be inefficient for more complicated distributions. In robust statistics, more importance is placed on robustness and applicability to a wide variety of distributions, rather than efficiency on a single distribution. M-estimators are a general class of estimators motivated by these concerns. They can be designed to yield both robustness and high relative efficiency, though possibly lower efficiency than traditional estimators for some cases. They can be very computationally complicated, however.

A more traditional alternative are L-estimators, which are very simple statistics that are easy to compute and interpret, in many cases robust, and often sufficiently efficient for initial estimates. See applications of L-estimators for further discussion. Inefficient statistics in this sense are discussed in detail in The Atomic Nucleus by R. D. Evans, written before the advent of computers, when efficiently estimating even the arithmetic mean of a sorted series of measurements was laborious.[14]

Hypothesis tests

edit

For comparing significance tests, a meaningful measure of efficiency can be defined based on the sample size required for the test to achieve a given task power.[15]

Pitman efficiency[16] and Bahadur efficiency (or Hodges–Lehmann efficiency)[17][18][19] relate to the comparison of the performance of statistical hypothesis testing procedures.

Experimental design

edit

For experimental designs, efficiency relates to the ability of a design to achieve the objective of the study with minimal expenditure of resources such as time and money. In simple cases, the relative efficiency of designs can be expressed as the ratio of the sample sizes required to achieve a given objective.[20]

See also

edit

Notes

edit
  1. ^ a b Everitt 2002, p.?128.
  2. ^ Nikulin, M.S. (2001) [1994], "Efficiency of a statistical procedure", Encyclopedia of Mathematics, EMS Press
  3. ^ a b Fisher, R (1921). "On the Mathematical Foundations of Theoretical Statistics". Philosophical Transactions of the Royal Society of London A. 222: 309–368. JSTOR?91208.
  4. ^ Everitt 2002, p.?128.
  5. ^ a b Dekking, F.M. (2007). A Modern Introduction to Probability and Statistics: Understanding Why and How. Springer. pp.?303–305. ISBN?978-1852338961.
  6. ^ Romano, Joseph P.; Siegel, Andrew F. (1986). Counterexamples in Probability and Statistics. Chapman and Hall. p.?194.
  7. ^ Van Trees, Harry L. (2013). Detection estimation and modulation theory. Kristine L. Bell, Zhi Tian (Second?ed.). Hoboken, N.J. ISBN?978-1-299-66515-6. OCLC?851161356.{{cite book}}: CS1 maint: location missing publisher (link)
  8. ^ DeGroot; Schervish (2002). Probability and Statistics (3rd?ed.). pp.?440–441.
  9. ^ Greene, William H. (2012). Econometric analysis (7th ed., international?ed.). Boston: Pearson. ISBN?978-0-273-75356-8. OCLC?726074601.
  10. ^ Williams, D. (2001). Weighing the Odds. Cambridge University Press. p.?165. ISBN?052100618X.
  11. ^ Maindonald, John; Braun, W. John (2025-08-14). Data Analysis and Graphics Using R: An Example-Based Approach. Cambridge University Press. p.?104. ISBN?978-1-139-48667-5.
  12. ^ Wackerly, Dennis D.; Mendenhall, William; Scheaffer, Richard L. (2008). Mathematical statistics with applications (Seventh?ed.). Belmont, CA: Thomson Brooks/Cole. p.?445. ISBN?9780495110811. OCLC?183886598.
  13. ^ Grubbs, Frank (1965). Statistical Measures of Accuracy for Riflemen and Missile Engineers. pp.?26–27.
  14. ^ Evans, Robley D. (1955). The Atomic Nucleus (PDF). McGraw Hill. pp.?746, Appendix G, p902 - Some Useful Inefficient Statistics.
  15. ^ Everitt 2002, p.?321.
  16. ^ Nikitin, Ya.Yu. (2001) [1994], "Efficiency, asymptotic", Encyclopedia of Mathematics, EMS Press
  17. ^ "Bahadur efficiency - Encyclopedia of Mathematics".
  18. ^ Arcones M. A. "Bahadur efficiency of the likelihood ratio test" preprint
  19. ^ Canay I. A. & Otsu, T. "Hodges–Lehmann Optimality for Testing Moment Condition Models"
  20. ^ Dodge, Y. (2006). The Oxford Dictionary of Statistical Terms. Oxford University Press. ISBN?0-19-920613-9.

References

edit

Further reading

edit
川芎有什么功效与作用 1977年属什么生肖 身上痒是什么原因引起的 蜗牛吃什么东西 头疼头胀是什么原因
为什么会打呼 脑部磁共振检查什么 血压表什么牌子的好最准确最耐用 直接胆红素是什么 女人肾虚吃什么药调理
男人为什么喜欢女人 中山有什么大学 母后是什么意思 办护照照片有什么要求 月经期适合吃什么食物
大便黄色是什么原因 甲状腺减退什么症状 焦虑症吃什么中成药能根治 倦怠期是什么意思 什么是脂溢性皮炎
mhc是什么意思hcv9jop1ns4r.cn 超管是什么hcv8jop4ns7r.cn 女人梦到地震预示什么hcv9jop4ns3r.cn 送命题是什么意思520myf.com 抑菌是什么意思cl108k.com
门庭冷落是什么意思hcv8jop8ns9r.cn 黑丝是什么hcv8jop0ns8r.cn 甲钴胺片主治什么病hcv7jop7ns2r.cn 狼来了的寓意是什么hcv8jop1ns5r.cn 丝鸟读什么hcv7jop6ns4r.cn
肝肾亏虚吃什么中成药hcv7jop4ns6r.cn 开网店卖什么好hcv8jop2ns2r.cn 公务员是干什么工作的hcv8jop8ns2r.cn 狗是什么属性hcv8jop8ns2r.cn 新疆人为什么不吃猪肉520myf.com
何炅的老婆叫什么名字hcv9jop8ns3r.cn 色达在四川什么地方hcv9jop1ns6r.cn 低烧是什么原因hcv7jop6ns7r.cn 孙悟空叫什么名字hcv7jop7ns3r.cn babyface是什么意思hcv7jop5ns1r.cn
百度