心律不齐是什么症状| 动脉夹层是什么病| mr什么意思| 痔疮是什么样子的图片大全| 百香果有什么营养| 释然什么意思| 4月29号是什么星座的| 龙长什么样| 酒后大量出虚汗什么原因| 脑动脉硬化是什么意思| 男属鼠的和什么属相最配| 经常吃豆腐有什么好处和坏处| mmp是什么意思| 女以念什么| 大便隐血弱阳性是什么意思| 皮肤病用什么药膏好| 如期而至是什么意思| 交接是什么意思| 八九不离十是什么意思| 白发多吃什么可以改善| 红细胞数目偏高是什么意思| 虐猫是什么意思| 泌乳素什么时候查最准确| 血小板分布宽度偏低是什么意思| 母仪天下是什么意思| 胀气打嗝是什么原因| 血脂高吃什么药好| 今天是什么日子老黄历| 反弹是什么意思| 西米露是什么材料做的| 梦见卖鱼是什么意思| 脚麻木是什么原因| 白砂糖和冰糖有什么区别| 氨水是什么东西| 腌羊肉串放什么调料| saucony是什么牌子| 孕囊是什么| 昭和是什么意思| 从此萧郎是路人是什么意思| 心脏早搏是什么症状| 保胎是什么意思| 九死一生什么生肖| 一天两包烟会导致什么后果| 灰度是什么意思| 国家三有保护动物是什么意思| 什么的后羿| 右侧上颌窦粘膜增厚是什么意思| 肝脓肿是什么原因引起的| 好记性不如烂笔头是什么意思| 空调管滴水是什么原因| 红丹是什么| 骨客念什么| 什么呀什么| 身上长疣是什么原因| 斛什么意思| 咳嗽不能吃什么| 小孩老是肚子疼是什么原因| 晚上右眼跳是什么预兆| 肩周炎看什么科| 心电轴右偏是什么意思| 苹果越狱是什么意思啊| 肝炎是什么病| tvt是什么意思| 米线是什么做的| 绿茶男是什么意思| 什么颜色加什么颜色等于橙色| 肺大泡是什么| ct是什么| 71年的猪是什么命| 梦见家里发大水了是什么征兆| 什么药治拉肚子| 扁平足是什么样子图片| 两个日是什么字| 早泄吃什么药好| 骨质增生吃什么药效果好| 什么南瓜| 调理月经吃什么药最好| itp是什么意思| 手足口病喝什么汤| 脸颊两侧长斑是什么原因怎么调理| 折耳根是什么东西| 克氏针是什么| 什么样的白云| 痰核流注什么意思| 有事钟无艳无事夏迎春是什么意思| 小孩肚子痛吃什么药| 孕妇梦见黑蛇是什么意思| 出球小动脉流什么血| 尿亚硝酸盐阳性是什么意思| 坐骨神经痛是什么原因引起的| 肾炎吃什么药好| 耳垂有折痕是什么原因| 11月1号是什么星座| 松花蛋是什么蛋| 帕金森挂什么科| 东北人喜欢吃什么菜| 发烧吃什么退烧药| 11.20是什么星座| 六味地黄丸什么功效| 胆结石吃什么| ii是什么意思| 噻虫高氯氟治什么虫| 呼吸有异味是什么原因| 苏麻为什么不嫁给康熙| 头胀痛吃什么药| 广基息肉是什么意思| 做梦梦到大蟒蛇是什么意思| 建卡需要带什么证件| 吃生葵花籽有什么好处和坏处吗| 吃什么食物养肝护肝| 庆大霉素治疗鱼什么病| 月经不来挂什么科| 蟾蜍属于什么动物| barbour是什么牌子| 荒唐是什么意思| 肾结石长什么样子图片| 狗狗肠胃炎吃什么药| 畸胎瘤是什么| 六块钱的麻辣烫是什么意思| 黄精泡水喝有什么功效| 火气太旺是什么原因| 丹参有什么作用和功效| 肾囊肿挂什么科| 眼霜有什么作用和功效| 九月23日是什么星座| 牙齿酸胀是什么原因| 1990年属马是什么命| 弟弟的儿子叫什么| 大校相当于地方什么级别| 花旗参有什么功效| 如火如荼是什么意思| 精液偏黄是什么原因| 骨髓移植是什么意思| hr是什么意思医学| 叶酸每天什么时候吃最好| 孕妇血糖高吃什么| 民兵是干什么的| 什么马不能跑| 什么鸣什么吠| 自渎是什么意思| 脑白质病是什么病| hvi是什么病| 欣赏是什么意思| 睾丸疝气有什么症状| 鸡奸什么意思| 什么是生化妊娠| 什么时候洗头最好| 弹性是什么意思| 舌苔黄腻吃什么药| 网球肘用什么方法能彻底治好呢| 贫血做什么检查能查出来| 绯色是什么颜色| 腋下有味道是什么原因| 出圈是什么意思| 口唇发绀是什么意思| 大力出奇迹什么意思| 国家的实质是什么| 渐冻症是什么病| 胎儿头偏大是什么原因| 整个手掌发红是什么原因| 手足口不能吃什么食物| 一夫一妻制产生于什么时期| 脾胃虚弱吃什么食物补| adh医学上是什么意思| 肝是起什么作用的| 喝什么水去火| 一什么新闻| 绸缪是什么意思| 呆板是什么意思| 脚肿吃什么药| 百合什么时候种| 修容是什么意思| 白细胞低有什么危害| 皮毒清软膏有什么功效| 什么是职务| 易激惹是什么意思| 心水是什么意思| 酥油茶是什么做的| 女人吃什么疏肝理气| 戒指丢了暗示着什么| 眩晕是怎么回事是什么原因引起| 入肉是什么意思| 什么网站可以看黄色视频| 胃不舒服恶心想吐吃什么药| 3月是什么季节| 趣味是什么意思| 过氧化氢是什么| leu是什么氨基酸| 木樨是什么意思| 丹毒用什么药膏| vip是什么意思| 棠字五行属什么| 骨转移用什么药能治愈| 什么样的人不能吃海参| 青筋凸起是什么原因| 孕检都检查什么项目| dose是什么意思| 领英是什么| 抚摸是什么意思| 头油是什么原因引起的| 什么是漏斗胸| 6月28是什么星座| 中气下陷是什么意思| 眉毛变白是什么原因| 稷字五行属什么| 铉是什么意思| 皮肤糖化是什么意思| 什么叫闭合性跌打损伤| 黄色有什么黄| 2024年五行属什么| 宫颈炎盆腔炎吃什么药效果最好| 腺瘤样增生是什么意思| 肾结石喝酒有什么影响| 甲状腺结节挂什么科室| 10年属什么生肖| 胸一大一小什么原因| 三教九流什么意思| perry是什么意思| 闭口是什么| 孕妇肚子疼是什么原因| 红红的枫叶像什么| 金蝉什么时候出土| 腰上长痘痘是什么原因| 强直性脊柱炎吃什么药| 为什么会长火疖子| 绿茶什么时候喝最好| 自信过头叫什么| ab型和o型生的孩子是什么血型| 韭菜什么时候种最好| 什么多腔| 香蕉不能和什么同吃| 单位时间是什么意思| 96年属什么的生肖| 我想长胖点有什么办法| 名什么中外| 扒是什么意思| 为什么叫| 伯恩光学是做什么的| 最小的一位数是什么| 小便发黄是什么原因引起的| 头大脸大适合什么发型| 梦见别人受伤流血是什么预兆| 月经期间洗澡会有什么影响吗| 笃怎么读什么意思| 明鉴是什么意思| 头痒是什么原因| 不可或缺是什么意思| 印度为什么用手吃饭| 卓玛什么意思| 狼烟是什么意思| 清火喝什么茶| 无聊的反义词是什么| 留意是什么意思| 蒙脱石散不能和什么药一起吃| 嗜碱性粒细胞比率偏高说明什么| 茵陈和什么泡水喝对肝脏最好| 飞机后面的白烟是什么| 卵巢在什么位置示意图| 农历五月二十一是什么星座| 晕车吃什么好| 爱好是什么意思| 斯德哥尔摩综合征是什么| 骨质疏松有什么症状| g1p1是什么意思| 百度

三场不胜!国安一到客场就萎了 靠工体 

(Redirected from Efficient estimator)
百度 本期简介本期简介:封面人物.CoverStory单霁翔,国家宝藏的摩登时代王刚:从前看见藏品就说钱,而今说故事总制片人说《国家宝藏》陈振裕,穿行在文物里的福尔摩斯图说世情.PhotoStory准女王范儿88岁网红奶奶世界.World政要丨金正恩文在寅,冬奥再打半岛旗梅姨,没能成为撒切尔夫人第二人物丨鲍威尔:不学经济的美联储新主席名流丨特朗普前妻,彪悍人生堪比邓文迪观美国丨全民消费情人节中国.China特别报道丨周令钊,百岁画狗票人物丨徐立平,雕刻火药的大国工匠周飞虎,真实的医界战狼赌王之子何猷君,不靠父亲靠大脑财经.Business改革四十周年丨宗庆后:我是从底层崛起的凡人商道丨叶大清:金融创新让中国弯道超车财智丨潘刚:当不好质检员的老板成不了企业家伊东重典:让产品成为表现个性的载体文史.Culture名家丨阿来,穿行在藏区与世界之间人物丨拓晓堂,为古书续命品书丨一堂对口相声式的美术课典藏丨《愚公移山》,徐悲鸿的伟大之图艺界.Artist大咖丨廖一梅:像我这么拧巴的人,也能有欢乐明星丨岳云鹏,时刻跟自己说别嘚瑟剧中人丨马戏之王的真真假假专栏.Column资治新编丨魏文侯的识人术佳人列传丨原版崔莺莺,被渣男辜负的可怜人佛陀故事丨开启说法之旅生活.Life美食丨奶酪,乡村非主流的逆袭科普丨中国克隆,拔毛变猴不是梦吐槽丨决战年终饭局名人经历丨李昌钰洗试管王源说丨挪威的雪,如履薄冰

In statistics, efficiency is a measure of quality of an estimator, of an experimental design,[1] or of a hypothesis testing procedure.[2] Essentially, a more efficient estimator needs fewer input data or observations than a less efficient one to achieve the Cramér–Rao bound. An efficient estimator is characterized by having the smallest possible variance, indicating that there is a small deviance between the estimated value and the "true" value in the L2 norm sense.[1]

The relative efficiency of two procedures is the ratio of their efficiencies, although often this concept is used where the comparison is made between a given procedure and a notional "best possible" procedure. The efficiencies and the relative efficiency of two procedures theoretically depend on the sample size available for the given procedure, but it is often possible to use the asymptotic relative efficiency (defined as the limit of the relative efficiencies as the sample size grows) as the principal comparison measure.

Estimators

edit

The efficiency of an unbiased estimator, T, of a parameter θ is defined as [3]

?

where ? is the Fisher information of the sample. Thus e(T) is the minimum possible variance for an unbiased estimator divided by its actual variance. The Cramér–Rao bound can be used to prove that e(T) ≤ 1.

Efficient estimators

edit

An efficient estimator is an estimator that estimates the quantity of interest in some “best possible” manner. The notion of “best possible” relies upon the choice of a particular loss function — the function which quantifies the relative degree of undesirability of estimation errors of different magnitudes. The most common choice of the loss function is quadratic, resulting in the mean squared error criterion of optimality.[4]

In general, the spread of an estimator around the parameter θ is a measure of estimator efficiency and performance. This performance can be calculated by finding the mean squared error. More formally, let T be an estimator for the parameter θ. The mean squared error of T is the value ?, which can be decomposed as a sum of its variance and bias:

?

An estimator T1 performs better than an estimator T2 if ?.[5] For a more specific case, if T1 and T2 are two unbiased estimators for the same parameter θ, then the variance can be compared to determine performance. In this case, T2 is more efficient than T1 if the variance of T2 is smaller than the variance of T1, i.e. ? for all values of θ. This relationship can be determined by simplifying the more general case above for mean squared error; since the expected value of an unbiased estimator is equal to the parameter value, ?. Therefore, for an unbiased estimator, ?, as the ? term drops out for being equal to 0.[5]

If an unbiased estimator of a parameter θ attains ? for all values of the parameter, then the estimator is called efficient.[3]

Equivalently, the estimator achieves equality in the Cramér–Rao inequality for all θ. The Cramér–Rao lower bound is a lower bound of the variance of an unbiased estimator, representing the "best" an unbiased estimator can be.

An efficient estimator is also the minimum variance unbiased estimator (MVUE). This is because an efficient estimator maintains equality on the Cramér–Rao inequality for all parameter values, which means it attains the minimum variance for all parameters (the definition of the MVUE). The MVUE estimator, even if it exists, is not necessarily efficient, because "minimum" does not mean equality holds on the Cramér–Rao inequality.

Thus an efficient estimator need not exist, but if it does, it is the MVUE.

Finite-sample efficiency

edit

Suppose { Pθ | θ ∈ Θ } is a parametric model and X = (X1, …, Xn) are the data sampled from this model. Let T = T(X) be an estimator for the parameter θ. If this estimator is unbiased (that is, E[?T?] = θ), then the Cramér–Rao inequality states the variance of this estimator is bounded from below:

?

where ? is the Fisher information matrix of the model at point θ. Generally, the variance measures the degree of dispersion of a random variable around its mean. Thus estimators with small variances are more concentrated, they estimate the parameters more precisely. We say that the estimator is a finite-sample efficient estimator (in the class of unbiased estimators) if it reaches the lower bound in the Cramér–Rao inequality above, for all θ ∈ Θ. Efficient estimators are always minimum variance unbiased estimators. However the converse is false: There exist point-estimation problems for which the minimum-variance mean-unbiased estimator is inefficient.[6]

Historically, finite-sample efficiency was an early optimality criterion. However this criterion has some limitations:

  • Finite-sample efficient estimators are extremely rare. In fact, it was proved that efficient estimation is possible only in an exponential family, and only for the natural parameters of that family.[7]
  • This notion of efficiency is sometimes restricted to the class of unbiased estimators. (Often it is not.[8]) Since there are no good theoretical reasons to require that estimators are unbiased, this restriction is inconvenient. In fact, if we use mean squared error as a selection criterion, many biased estimators will slightly outperform the “best” unbiased ones. For example, in multivariate statistics for dimension three or more, the mean-unbiased estimator, sample mean, is inadmissible: Regardless of the outcome, its performance is worse than for example the James–Stein estimator.[citation needed]
  • Finite-sample efficiency is based on the variance, as a criterion according to which the estimators are judged. A more general approach is to use loss functions other than quadratic ones, in which case the finite-sample efficiency can no longer be formulated.[citation needed][dubiousdiscuss]

As an example, among the models encountered in practice, efficient estimators exist for: the mean μ of the normal distribution (but not the variance σ2), parameter λ of the Poisson distribution, the probability p in the binomial or multinomial distribution.

Consider the model of a normal distribution with unknown mean but known variance: { Pθ = N(θ, σ2) | θR }. The data consists of n independent and identically distributed observations from this model: X = (x1, …, xn). We estimate the parameter θ using the sample mean of all observations:

?

This estimator has mean θ and variance of σ2?/?n, which is equal to the reciprocal of the Fisher information from the sample. Thus, the sample mean is a finite-sample efficient estimator for the mean of the normal distribution.

Asymptotic efficiency

edit

Asymptotic efficiency requires Consistency (statistics), asymptotically normal distribution of the estimator, and an asymptotic variance-covariance matrix no worse than that of any other estimator.[9]

Example: Median

edit

Consider a sample of size ? drawn from a normal distribution of mean ? and unit variance, i.e., ?

The sample mean, ?, of the sample ?, defined as

?

The variance of the mean, 1/N (the square of the standard error) is equal to the reciprocal of the Fisher information from the sample and thus, by the Cramér–Rao inequality, the sample mean is efficient in the sense that its efficiency is unity (100%).

Now consider the sample median, ?. This is an unbiased and consistent estimator for ?. For large ? the sample median is approximately normally distributed with mean ? and variance ?[10]

?

The efficiency of the median for large ? is thus

?

In other words, the relative variance of the median will be ?, or 57% greater than the variance of the mean – the standard error of the median will be 25% greater than that of the mean.[11]

Note that this is the asymptotic efficiency — that is, the efficiency in the limit as sample size ? tends to infinity. For finite values of ? the efficiency is higher than this (for example, a sample size of 3 gives an efficiency of about 74%).[citation needed]

The sample mean is thus more efficient than the sample median in this example. However, there may be measures by which the median performs better. For example, the median is far more robust to outliers, so that if the Gaussian model is questionable or approximate, there may advantages to using the median (see Robust statistics).

Dominant estimators

edit

If ? and ? are estimators for the parameter ?, then ? is said to dominate ? if:

  1. its mean squared error (MSE) is smaller for at least some value of ?
  2. the MSE does not exceed that of ? for any value of θ.

Formally, ? dominates ? if

?

holds for all ?, with strict inequality holding somewhere.

Relative efficiency

edit

The relative efficiency of two unbiased estimators is defined as[12]

?

Although ? is in general a function of ?, in many cases the dependence drops out; if this is so, ? being greater than one would indicate that ? is preferable, regardless of the true value of ?.

An alternative to relative efficiency for comparing estimators, is the Pitman closeness criterion. This replaces the comparison of mean-squared-errors with comparing how often one estimator produces estimates closer to the true value than another estimator.

Estimators of the mean of u.i.d. variables

edit

In estimating the mean of uncorrelated, identically distributed variables we can take advantage of the fact that the variance of the sum is the sum of the variances. In this case efficiency can be defined as the square of the coefficient of variation, i.e.,[13]

?

Relative efficiency of two such estimators can thus be interpreted as the relative sample size of one required to achieve the certainty of the other. Proof:

?

Now because ? we have ?, so the relative efficiency expresses the relative sample size of the first estimator needed to match the variance of the second.

Robustness

edit

Efficiency of an estimator may change significantly if the distribution changes, often dropping. This is one of the motivations of robust statistics – an estimator such as the sample mean is an efficient estimator of the population mean of a normal distribution, for example, but can be an inefficient estimator of a mixture distribution of two normal distributions with the same mean and different variances. For example, if a distribution is a combination of 98% N(μ, σ) and 2% N(μ, 10σ), the presence of extreme values from the latter distribution (often "contaminating outliers") significantly reduces the efficiency of the sample mean as an estimator of μ. By contrast, the trimmed mean is less efficient for a normal distribution, but is more robust (i.e., less affected) by changes in the distribution, and thus may be more efficient for a mixture distribution. Similarly, the shape of a distribution, such as skewness or heavy tails, can significantly reduce the efficiency of estimators that assume a symmetric distribution or thin tails.

Efficiency in statistics

edit

Efficiency in statistics is important because it allows the performance of various estimators to be compared. Although an unbiased estimator is usually favored over a biased one, a more efficient biased estimator can sometimes be more valuable than a less efficient unbiased estimator. For example, this can occur when the values of the biased estimator gathers around a number closer to the true value. Thus, estimator performance can be predicted easily by comparing their mean squared errors or variances.

Uses of inefficient estimators

edit

While efficiency is a desirable quality of an estimator, it must be weighed against other considerations, and an estimator that is efficient for certain distributions may well be inefficient for other distributions. Most significantly, estimators that are efficient for clean data from a simple distribution, such as the normal distribution (which is symmetric, unimodal, and has thin tails) may not be robust to contamination by outliers, and may be inefficient for more complicated distributions. In robust statistics, more importance is placed on robustness and applicability to a wide variety of distributions, rather than efficiency on a single distribution. M-estimators are a general class of estimators motivated by these concerns. They can be designed to yield both robustness and high relative efficiency, though possibly lower efficiency than traditional estimators for some cases. They can be very computationally complicated, however.

A more traditional alternative are L-estimators, which are very simple statistics that are easy to compute and interpret, in many cases robust, and often sufficiently efficient for initial estimates. See applications of L-estimators for further discussion. Inefficient statistics in this sense are discussed in detail in The Atomic Nucleus by R. D. Evans, written before the advent of computers, when efficiently estimating even the arithmetic mean of a sorted series of measurements was laborious.[14]

Hypothesis tests

edit

For comparing significance tests, a meaningful measure of efficiency can be defined based on the sample size required for the test to achieve a given task power.[15]

Pitman efficiency[16] and Bahadur efficiency (or Hodges–Lehmann efficiency)[17][18][19] relate to the comparison of the performance of statistical hypothesis testing procedures.

Experimental design

edit

For experimental designs, efficiency relates to the ability of a design to achieve the objective of the study with minimal expenditure of resources such as time and money. In simple cases, the relative efficiency of designs can be expressed as the ratio of the sample sizes required to achieve a given objective.[20]

See also

edit

Notes

edit
  1. ^ a b Everitt 2002, p.?128.
  2. ^ Nikulin, M.S. (2001) [1994], "Efficiency of a statistical procedure", Encyclopedia of Mathematics, EMS Press
  3. ^ a b Fisher, R (1921). "On the Mathematical Foundations of Theoretical Statistics". Philosophical Transactions of the Royal Society of London A. 222: 309–368. JSTOR?91208.
  4. ^ Everitt 2002, p.?128.
  5. ^ a b Dekking, F.M. (2007). A Modern Introduction to Probability and Statistics: Understanding Why and How. Springer. pp.?303–305. ISBN?978-1852338961.
  6. ^ Romano, Joseph P.; Siegel, Andrew F. (1986). Counterexamples in Probability and Statistics. Chapman and Hall. p.?194.
  7. ^ Van Trees, Harry L. (2013). Detection estimation and modulation theory. Kristine L. Bell, Zhi Tian (Second?ed.). Hoboken, N.J. ISBN?978-1-299-66515-6. OCLC?851161356.{{cite book}}: CS1 maint: location missing publisher (link)
  8. ^ DeGroot; Schervish (2002). Probability and Statistics (3rd?ed.). pp.?440–441.
  9. ^ Greene, William H. (2012). Econometric analysis (7th ed., international?ed.). Boston: Pearson. ISBN?978-0-273-75356-8. OCLC?726074601.
  10. ^ Williams, D. (2001). Weighing the Odds. Cambridge University Press. p.?165. ISBN?052100618X.
  11. ^ Maindonald, John; Braun, W. John (2025-08-14). Data Analysis and Graphics Using R: An Example-Based Approach. Cambridge University Press. p.?104. ISBN?978-1-139-48667-5.
  12. ^ Wackerly, Dennis D.; Mendenhall, William; Scheaffer, Richard L. (2008). Mathematical statistics with applications (Seventh?ed.). Belmont, CA: Thomson Brooks/Cole. p.?445. ISBN?9780495110811. OCLC?183886598.
  13. ^ Grubbs, Frank (1965). Statistical Measures of Accuracy for Riflemen and Missile Engineers. pp.?26–27.
  14. ^ Evans, Robley D. (1955). The Atomic Nucleus (PDF). McGraw Hill. pp.?746, Appendix G, p902 - Some Useful Inefficient Statistics.
  15. ^ Everitt 2002, p.?321.
  16. ^ Nikitin, Ya.Yu. (2001) [1994], "Efficiency, asymptotic", Encyclopedia of Mathematics, EMS Press
  17. ^ "Bahadur efficiency - Encyclopedia of Mathematics".
  18. ^ Arcones M. A. "Bahadur efficiency of the likelihood ratio test" preprint
  19. ^ Canay I. A. & Otsu, T. "Hodges–Lehmann Optimality for Testing Moment Condition Models"
  20. ^ Dodge, Y. (2006). The Oxford Dictionary of Statistical Terms. Oxford University Press. ISBN?0-19-920613-9.

References

edit

Further reading

edit
壬水代表什么 狐狸的尾巴有什么作用 冲任失调是什么意思 鲜字五行属什么 冷冻是什么意思
海的尽头是什么 茯苓的功效与作用是什么 蚯蚓中药叫什么 发光免疫是检查什么的 今天股票为什么大跌
抓拍是什么意思 胎儿右侧脉络丛囊肿是什么意思 红煞是什么意思 腰间盘突出有什么症状 嬗变什么意思
感冒低烧是什么原因 孕妇怕冷是什么原因 内热外寒感冒用什么药 停车坐爱枫林晚中的坐是什么意思 12月5日什么星座
黑海为什么叫黑海hcv8jop9ns2r.cn 治甲沟炎用什么药膏好hcv7jop6ns0r.cn 低密度脂蛋白高吃什么药hcv9jop7ns4r.cn 什么人容易怀葡萄胎hcv9jop3ns4r.cn 7月14号是什么星座tiangongnft.com
aa是什么病hcv8jop6ns6r.cn 43岁属什么hcv7jop6ns2r.cn 生育保险是什么意思hcv8jop3ns5r.cn 用什么洗头白发能变黑hcv8jop8ns8r.cn 肉身成圣是什么意思hcv9jop1ns0r.cn
细胞是由什么构成的hcv9jop4ns1r.cn 六月初七是什么星座cj623037.com 洁面慕斯和洗面奶有什么区别hcv7jop6ns9r.cn 宝宝乳糖不耐受喝什么奶粉比较好hcv8jop9ns2r.cn 肝外胆管扩张什么意思hcv7jop4ns5r.cn
脖子下面是什么部位hcv8jop8ns3r.cn 朱砂痣什么意思hcv9jop7ns3r.cn 菠萝蜜的核有什么功效hcv9jop0ns9r.cn pm2.5是什么hcv7jop4ns8r.cn ca代表什么病hcv9jop6ns4r.cn
百度