炖牛肉放什么调料| 女生的胸长什么样子| 眼视光医学是干什么的| 早上起床吐痰带血是什么原因| 儿童中暑吃什么药| 祛湿吃什么药| 尿酸高吃什么菜| 什么的绿毯| 安罗替尼适合什么肿瘤| 戊辰五行属什么| 房水由什么产生| hn是什么意思| 什么样的刘胡兰| 肆虐是什么意思| 房早有什么危害| 振幅是什么意思| 原木色是什么颜色| 蝉什么时候出现| 排卵期出血是什么原因造成的| 黄绿色痰液是什么感染| 刚怀孕初期吃什么好呢| 牛皮糖是什么意思| 帽子戏法是什么意思| 增强免疫力吃什么药| 虚火牙痛吃什么药效果最快| 秦朝灭亡后是什么朝代| 荷花的花语是什么| 小孩睡觉磨牙是什么原因引起的| 诱发电位是检查什么病的| 桑叶泡水喝有什么功效| 工作单位是什么意思| 此言念什么| 水瓶座有什么特点| 腰痛吃什么好| 重庆五行属什么| 风寒感冒吃什么食物| 做什么事要从头来| 郎中是什么意思| 儿童办理护照需要什么材料| 吃什么水果美白| 佩戴狼牙有什么好处| 男孩学什么技术最好| 紫茉莉什么时候开花| 黄加黑变成什么颜色| 制动是什么| 误人子弟什么意思| 猪苓是什么东西| 怀孕前3个月需要注意什么| 咏柳的咏是什么意思| 七月八号是什么日子| 香其酱是什么酱| 故宫里面有什么| 白眼狼是什么意思| 缘字五行属什么| 安抚奶嘴什么时候开始用| 阿胶的原料是什么| 卵圆孔未闭是什么意思| 处女男喜欢什么样的女生| blanc什么意思| 为什么老长口腔溃疡| bunny是什么意思| 月经老是推后是什么原因| 坚贞不渝是什么意思| 纤维硬结灶是什么意思| 做糖耐前一天需要注意什么| 舌根起泡是什么原因| 石斛有什么作用| lp是什么的简称| 做包皮手术挂什么科| 随喜功德是什么意思| 现代是什么时候| 什么牌子皮带结实耐用| 梦见自己离婚是什么预兆| 榴莲什么时候成熟| 天德合是什么意思| 1941属什么生肖| 脚踝浮肿是什么原因| 糙米饭是什么米| 什么异思迁| 总感觉自己有病是什么心理病| pubg是什么意思| 妲是什么意思| 吃什么能快速减肥| 陈晓和赵丽颖为什么分手| 闭关什么意思| 讨扰是什么意思| npv是什么| 小孩发烧可以吃什么水果| 手麻是什么病的预兆| 颈椎疼挂什么科室| 煮沸除氯是什么意思| 像蜈蚣一样的虫子叫什么| 水煎是什么意思| 孕妇做无创是检查什么| 尿道炎和阴道炎有什么区别| 梦见蛇挡路是什么意思| 硅胶是什么材料做的| 肾功能不好吃什么药调理| 市盈率和市净率是什么意思| 喉咙有异物感看什么科| mw是什么意思| 中元节是什么时候| 探望病人买什么水果| 36岁生日有什么讲究| 低密度脂蛋白偏低是什么意思| 净土的意思是什么| 热浪是什么意思| 金福是什么生肖| 牙齿疼吃什么药| 印泥用什么能洗掉| 氢化油是什么东西| 住院送什么花好| 挚友是什么意思| 优衣库属于什么档次| 头部爱出汗是什么原因| ncu病房是什么意思| 梦见死人什么意思| 左耳疼痛什么原因引起| 何曾是什么意思| 四月份是什么季节| 小姐的全套都有什么| 土霉素喂鸡有什么作用| 炒牛肉用什么配菜| 眼睛肿疼是什么原因引起的| 3.22是什么星座| 疱疹是什么原因引起的| 嘴巴有异味是什么原因| 人绒毛膜促性腺激素是查什么的| 糖尿病可以吃什么菜| 冰箱什么牌子好又省电质量又好| ykk是什么牌子| 10.1什么星座| 鹿吃什么| 偷是什么生肖| 平均血小板体积偏高是什么原因| 处女座前面是什么星座| 玫瑰花茶有什么作用| 尿血最坏的病是什么病| dolphin是什么意思| 左右是什么意思| 梦见买馒头是什么意思| 二月初十是什么星座| 阿胶糕适合什么人吃| ppa是什么意思| 孕20周做什么检查| 氧化氢是什么| 处女座什么性格| 站桩对身体有什么好处和功效| 上面一个山下面一个今读什么| 脱发缺少什么维生素| 高血压高血糖能吃什么水果| 蜈蚣为什么不能打死| 为什么头晕| 尿道下裂是什么意思| 肺胀是什么病| 轻浮是什么意思| 纪元是什么意思| 埋伏牙是什么意思| 梦见以前的朋友是什么意思| 月经腰疼是什么原因引起的| 肠癌是什么原因造成的| oink是什么意思| 红绿色盲是什么遗传病| 壬字五行属什么| 花雕酒是什么| 扁桃体切除对身体有什么影响| 什么叫根管治疗| 那悲歌总会在梦中惊醒是什么歌| b1是什么| 甘油三酯偏高是什么意思| 猫咪为什么害怕黄瓜| 吃什么蛋白质含量最高| 喝茶叶茶有什么好处| 入伏吃什么| 胃窦糜烂是什么意思严重吗| 007什么意思| 投诉护士找什么部门| 平反是什么意思| 肠粘连会有什么症状| 娇妻是什么意思| 黄疸是什么引起的| 蜂蜜什么人不能吃| 乌龟吃什么| nda是什么意思| 然五行属什么| 无花果是什么季节的水果| 空气缸是什么意思| 胸贴是什么| 哦吼是什么意思| 白羊男喜欢什么样的女生| 高丽参适合什么人吃| 全血铅测定是什么意思| 刚出生的小鱼吃什么| p0s是什么意思| 下面干涩是什么原因导致的| 说梦话是什么原因| 什么是云母| ppi是什么药| 肺炎吃什么药效果好| 巴基斯坦用什么语言| 令羽读什么| lot是什么意思| 空气栓塞取什么卧位| 泥淖是什么意思| 骨密度z值是什么意思| 女性尿出血是什么原因| 什么是正太| 开大是什么意思| 梗塞灶是什么意思| 吃什么菜对眼睛好| 何方神圣是什么意思| 低密度脂蛋白偏低是什么意思| 贵州有什么特产| 佐助是什么意思| 言字旁的字和什么有关| 儿童不长个子去医院挂什么科| 苁蓉有什么功效| 什么是因果| 胎方位roa是什么意思| 治妇科炎症用什么药好| #NAME?| 弼马温是什么意思| 肺结核复发有什么症状| 鸽子和什么炖气血双补| 什么同道合| 什么是日记| 甲亢挂什么科室| 非营利性医院是什么意思| 倒拔垂杨柳是什么意思| 人为什么要死| b1是什么| 3月18号是什么星座| 轩字属于五行属什么| 刮痧不出痧是什么原因| 什么是音色| 经常性偏头疼是什么原因| 念想是什么意思| 为什么同房后小腹疼痛| 做梦抓到很多鱼是什么征兆| 燕窝什么味道| 奕什么意思| miu什么牌子| 打哈哈是什么意思| 梦见桥断了是什么意思| 尿蛋白十1是什么意思| 辛属什么五行| 水瓶女和什么星座最配| 感性的人是什么意思| 克罗心是什么牌子| 什么叫收缩压和舒张压| 孕妇梦见捡鸡蛋是什么意思| 5月25日什么星座| 4月21日什么星座| 二聚体是什么| 农历11月11日是什么星座| 武松的性格特点是什么| 梦见狼是什么预兆| 偏头痛什么原因引起的| 甜菜根是什么菜| 手不什么什么| 5.11什么星座| 什么的草坪| rag是什么| 脉弱是什么意思| 百度

冠达邮轮旗舰玛丽皇后2号盛大开启首个上海往返航次

百度 在这购彩安全吗?有什么保障?会不会发生弃奖事件?网站证件齐全,与东方网共同运营,属于官方性质的业务,并与支付宝、快钱等大型网站有合作,安全放心。

A diversity index is a method of measuring how many different types (e.g. species) there are in a dataset (e.g. a community). Diversity indices are statistical representations of different aspects of biodiversity (e.g. richness, evenness, and dominance), which are useful simplifications for comparing different communities or sites.

When diversity indices are used in ecology, the types of interest are usually species, but they can also be other categories, such as genera, families, functional types, or haplotypes. The entities of interest are usually individual organisms (e.g. plants or animals), and the measure of abundance can be, for example, number of individuals, biomass or coverage. In demography, the entities of interest can be people, and the types of interest various demographic groups. In information science, the entities can be characters and the types of the different letters of the alphabet. The most commonly used diversity indices are simple transformations of the effective number of types (also known as 'true diversity'), but each diversity index can also be interpreted in its own right as a measure corresponding to some real phenomenon (but a different one for each diversity index).[1][2][3][4]

Many indices only account for categorical diversity between subjects or entities. Such indices, however do not account for the total variation (diversity) that can be held between subjects or entities which occurs only when both categorical and qualitative diversity are calculated.

Diversity indices described in this article include:

  • Richness, simply a count of the number of types in a dataset.
  • Shannon index, which also takes into account the proportional abundance of each class under a weighted geometric mean.
    • The Rényi entropy, which adds the ability to freely vary the kind of weighted mean used.
  • Simpson index, which too takes into account the proportional abundance of each class under a weighted arithmetic mean
  • Berger–Parker index, which gives the proportional abundance of the most abundant type.
  • Effective number of species (true diversity), which allows for freely varying the kind of weighted mean used, and has a intuitive meaning.[4]

Some more sophisticated indices also account for the phylogenetic relatedness among the types. These are called phylo-divergence indices, and are not yet described in this article.[5]

Effective number of species or Hill numbers

edit

True diversity, or the effective number of types, refers to the number of equally abundant types needed for the average proportional abundance of the types to equal that observed in the dataset of interest (where all types may not be equally abundant). The true diversity in a dataset is calculated by first taking the weighted generalized mean Mq?1 of the proportional abundances of the types in the dataset, and then taking the reciprocal of this. The equation is:[3][4]

?

The denominator Mq?1 equals the average proportional abundance of the types in the dataset as calculated with the weighted generalized mean with exponent q???1. In the equation, R is richness (the total number of types in the dataset), and the proportional abundance of the ith type is pi. The proportional abundances themselves are used as the nominal weights. The numbers ? are called Hill numbers of order q or effective number of species.[6]

When q = 1, the above equation is undefined. However, the mathematical limit as q approaches 1 is well defined and the corresponding diversity is calculated with the following equation:

?

which is the exponential of the Shannon entropy calculated with natural logarithms (see above). In other domains, this statistic is also known as the perplexity.

The general equation of diversity is often written in the form[1][2]

?

and the term inside the parentheses is called the basic sum. Some popular diversity indices correspond to the basic sum as calculated with different values of q.[2]

Sensitivity of the diversity value to rare vs. abundant species

edit

The value of q is often referred to as the order of the diversity. It defines the sensitivity of the true diversity to rare vs. abundant species by modifying how the weighted mean of the species' proportional abundances is calculated. With some values of the parameter q, the value of the generalized mean Mq?1 assumes familiar kinds of weighted means as special cases. In particular,

  • q = 0 corresponds to the weighted harmonic mean,
  • q = 1 to the weighted geometric mean, and
  • q = 2 to the weighted arithmetic mean.
  • As q approaches infinity, the weighted generalized mean with exponent q???1 approaches the maximum pi value, which is the proportional abundance of the most abundant species in the dataset.

Generally, increasing the value of q increases the effective weight given to the most abundant species. This leads to obtaining a larger Mq?1 value and a smaller true diversity (qD) value with increasing q.

When q = 1, the weighted geometric mean of the pi values is used, and each species is exactly weighted by its proportional abundance (in the weighted geometric mean, the weights are the exponents). When q > 1, the weight given to abundant species is exaggerated, and when q < 1, the weight given to rare species is. At q = 0, the species weights exactly cancel out the species proportional abundances, such that the weighted mean of the pi values equals 1 / R even when all species are not equally abundant. At q = 0, the effective number of species, 0D, hence equals the actual number of species R. In the context of diversity, q is generally limited to non-negative values. This is because negative values of q would give rare species so much more weight than abundant ones that qD would exceed R.[3][4]

Richness

edit

Richness R simply quantifies how many different types the dataset of interest contains. For example, species richness (usually noted S) is simply the number of species, e.g. at a particular site. Richness is a simple measure, so it has been a popular diversity index in ecology, where abundance data are often not available.[7] If true diversity is calculated with q = 0, the effective number of types (0D) equals the actual number of types, which is identical to Richness (R).[2][4]

Shannon index

edit

The Shannon index has been a popular diversity index in the ecological literature, where it is also known as Shannon's diversity index, Shannon–Wiener index, and (erroneously) Shannon–Weaver index.[8] The measure was originally proposed by Claude Shannon in 1948 to quantify the entropy (hence Shannon entropy, related to Shannon information content) in strings of text.[9] The idea is that the more letters there are, and the closer their proportional abundances in the string of interest, the more difficult it is to correctly predict which letter will be the next one in the string. The Shannon entropy quantifies the uncertainty (entropy or degree of surprise) associated with this prediction. It is most often calculated as follows:

?

where pi is the proportion of characters belonging to the ith type of letter in the string of interest. In ecology, pi is often the proportion of individuals belonging to the ith species in the dataset of interest. Then the Shannon entropy quantifies the uncertainty in predicting the species identity of an individual that is taken at random from the dataset.

Although the equation is here written with natural logarithms, the base of the logarithm used when calculating the Shannon entropy can be chosen freely. Shannon himself discussed logarithm bases 2, 10 and e, and these have since become the most popular bases in applications that use the Shannon entropy. Each log base corresponds to a different measurement unit, which has been called binary digits (bits), decimal digits (decits), and natural digits (nats) for the bases 2, 10 and e, respectively. Comparing Shannon entropy values that were originally calculated with different log bases requires converting them to the same log base: change from the base a to base b is obtained with multiplication by logb(a).[9]

The Shannon index (H') is related to the weighted geometric mean of the proportional abundances of the types. Specifically, it equals the logarithm of true diversity as calculated with q = 1:[3]

?

This can also be written

?

which equals

?

Since the sum of the pi values equals 1 by definition, the denominator equals the weighted geometric mean of the pi values, with the pi values themselves being used as the weights (exponents in the equation). The term within the parentheses hence equals true diversity 1D, and H' equals ln(1D).[1][3][4]

When all types in the dataset of interest are equally common, all pi values equal 1 / R, and the Shannon index hence takes the value ln(R). The more unequal the abundances of the types, the larger the weighted geometric mean of the pi values, and the smaller the corresponding Shannon entropy. If practically all abundance is concentrated to one type, and the other types are very rare (even if there are many of them), Shannon entropy approaches zero. When there is only one type in the dataset, Shannon entropy exactly equals zero (there is no uncertainty in predicting the type of the next randomly chosen entity).

In machine learning the Shannon index is also called as Information gain.

Rényi entropy

edit

The Rényi entropy is a generalization of the Shannon entropy to other values of q than 1. It can be expressed:

?

which equals

?

This means that taking the logarithm of true diversity based on any value of q gives the Rényi entropy corresponding to the same value of q.

Simpson index

edit

The Simpson index was introduced in 1949 by Edward H. Simpson to measure the degree of concentration when individuals are classified into types.[10] The same index was rediscovered by Orris C. Herfindahl in 1950.[11] The square root of the index had already been introduced in 1945 by the economist Albert O. Hirschman.[12] As a result, the same measure is usually known as the Simpson index in ecology, and as the Herfindahl index or the Herfindahl–Hirschman index (HHI) in economics.

The measure equals the probability that two entities taken at random from the dataset of interest represent the same type.[10] It equals:

?

where R is richness (the total number of types in the dataset). This equation is also equal to the weighted arithmetic mean of the proportional abundances pi of the types of interest, with the proportional abundances themselves being used as the weights.[1] Proportional abundances are by definition constrained to values between zero and one, but it is a weighted arithmetic mean, hence λ ≥ 1/R, which is reached when all types are equally abundant.

By comparing the equation used to calculate λ with the equations used to calculate true diversity, it can be seen that 1/λ equals 2D, i.e., true diversity as calculated with q = 2. The original Simpson's index hence equals the corresponding basic sum.[2]

The interpretation of λ as the probability that two entities taken at random from the dataset of interest represent the same type assumes that the entities are sampled with replacement. If the dataset is very large, sampling without replacement gives approximately the same result, but in small datasets, the difference can be substantial. If the dataset is small, and sampling without replacement is assumed, the probability of obtaining the same type with both random draws is:

?

where ni is the number of entities belonging to the ith type and N is the total number of entities in the dataset.[10] This form of the Simpson index is also known as the Hunter–Gaston index in microbiology.[13]

Since the mean proportional abundance of the types increases with decreasing number of types and increasing abundance of the most abundant type, λ obtains small values in datasets of high diversity and large values in datasets of low diversity. This is counterintuitive behavior for a diversity index, so often, such transformations of λ that increase with increasing diversity have been used instead. The most popular of such indices have been the inverse Simpson index (1/λ) and the Gini–Simpson index (1???λ).[1][2] Both of these have also been called the Simpson index in the ecological literature, so care is needed to avoid accidentally comparing the different indices as if they were the same.

Inverse Simpson index

edit

The inverse Simpson index equals:

?

This simply equals true diversity of order 2, i.e. the effective number of types that is obtained when the weighted arithmetic mean is used to quantify average proportional abundance of types in the dataset of interest.

The index is also used as a measure of the effective number of parties.

Gini–Simpson index

edit

The Gini-Simpson Index is also called Gini impurity, or Gini's diversity index[14] in the field of Machine Learning. The original Simpson index λ equals the probability that two entities taken at random from the dataset of interest (with replacement) represent the same type. Its transformation 1???λ, therefore, equals the probability that the two entities represent different types. This measure is also known in ecology as the probability of interspecific encounter (PIE)[15] and the Gini–Simpson index.[2] It can be expressed as a transformation of the true diversity of order 2:

?

The Gibbs–Martin index of sociology, psychology, and management studies,[16] which is also known as the Blau index, is the same measure as the Gini–Simpson index.

The quantity is also known as the expected heterozygosity in population genetics.

Berger–Parker index

edit

The Berger–Parker index, named after Wolfgang H. Berger and Frances Lawrence Parker,[17] equals the maximum pi value in the dataset, i.e., the proportional abundance of the most abundant type. This corresponds to the weighted generalized mean of the pi values when q approaches infinity, and hence equals the inverse of the true diversity of order infinity (1/D).

See also

edit

References

edit
  1. ^ a b c d e Hill, M. O. (1973). "Diversity and evenness: a unifying notation and its consequences". Ecology. 54 (2): 427–432. Bibcode:1973Ecol...54..427H. doi:10.2307/1934352. JSTOR?1934352.
  2. ^ a b c d e f g Jost, L (2006). "Entropy and diversity". Oikos. 113 (2): 363–375. Bibcode:2006Oikos.113..363J. doi:10.1111/j.2006.0030-1299.14714.x.
  3. ^ a b c d e Tuomisto, H (2010). "A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity". Ecography. 33 (1): 2–22. Bibcode:2010Ecogr..33....2T. doi:10.1111/j.1600-0587.2009.05880.x.
  4. ^ a b c d e f Tuomisto, H (2010). "A consistent terminology for quantifying species diversity? Yes, it does exist". Oecologia. 164 (4): 853–860. Bibcode:2010Oecol.164..853T. doi:10.1007/s00442-010-1812-0. PMID?20978798. S2CID?19902787.
  5. ^ Tucker, Caroline M.; Cadotte, Marc W.; Carvalho, Silvia B.; Davies, T. Jonathan; Ferrier, Simon; Fritz, Susanne A.; Grenyer, Rich; Helmus, Matthew R.; Jin, Lanna S. (May 2017). "A guide to phylogenetic metrics for conservation, community ecology and macroecology: A guide to phylogenetic metrics for ecology". Biological Reviews. 92 (2): 698–715. doi:10.1111/brv.12252. PMC?5096690. PMID?26785932.
  6. ^ Chao, Anne; Chiu, Chun-Huo; Jost, Lou (2016), "Phylogenetic Diversity Measures and Their Decomposition: A Framework Based on Hill Numbers", Biodiversity Conservation and Phylogenetic Systematics, Topics in Biodiversity and Conservation, vol.?14, Springer International Publishing, pp.?141–172, doi:10.1007/978-3-319-22461-9_8, ISBN?9783319224602
  7. ^ Morris, E. Kathryn; Caruso, Tancredi; Buscot, Fran?ois; Fischer, Markus; Hancock, Christine; Maier, Tanja S.; Meiners, Torsten; Müller, Caroline; Obermaier, Elisabeth; Prati, Daniel; Socher, Stephanie A.; Sonnemann, Ilja; W?schke, Nicole; Wubet, Tesfaye; Wurst, Susanne (September 2014). "Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories". Ecology and Evolution. 4 (18): 3514–3524. Bibcode:2014EcoEv...4.3514M. doi:10.1002/ece3.1155. ISSN?2045-7758. PMC?4224527. PMID?25478144.
  8. ^ Spellerberg, Ian F., and Peter J. Fedor. (2003) A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon–Wiener’Index. Global Ecology and Biogeography 12.3, 177-179.
  9. ^ a b Shannon, C. E. (1948) A mathematical theory of communication. The Bell System Technical Journal, 27, 379–423 and 623–656.
  10. ^ a b c Simpson, E. H. (1949). "Measurement of diversity". Nature. 163 (4148): 688. Bibcode:1949Natur.163..688S. doi:10.1038/163688a0.
  11. ^ Herfindahl, O. C. (1950) Concentration in the U.S. Steel Industry. Unpublished doctoral dissertation, Columbia University.
  12. ^ Hirschman, A. O. (1945) National power and the structure of foreign trade. Berkeley.
  13. ^ Hunter, PR; Gaston, MA (1988). "Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity". J Clin Microbiol. 26 (11): 2465–2466. doi:10.1128/JCM.26.11.2465-2466.1988. PMC?266921. PMID?3069867.
  14. ^ "Growing Decision Trees". MathWorks.
  15. ^ Hurlbert, S.H. (1971). "The nonconcept of species diversity: A critique and alternative parameters". Ecology. 52 (4): 577–586. Bibcode:1971Ecol...52..577H. doi:10.2307/1934145. JSTOR?1934145. PMID?28973811. S2CID?25837001.
  16. ^ Gibbs, Jack P.; William T. Martin (1962). "Urbanization, technology and the division of labor". American Sociological Review. 27 (5): 667–677. doi:10.2307/2089624. JSTOR?2089624.
  17. ^ Berger, Wolfgang H.; Parker, Frances L. (June 1970). "Diversity of Planktonic Foraminifera in Deep-Sea Sediments". Science. 168 (3937): 1345–1347. Bibcode:1970Sci...168.1345B. doi:10.1126/science.168.3937.1345. PMID?17731043. S2CID?29553922.

Further reading

edit
edit
刮脸有什么好处与坏处 眉心发红是什么原因 特需门诊和专家门诊有什么区别 孕妇肚子疼是什么原因 情景剧是什么意思
第一次怀孕有什么反应 尹什么意思 膝盖后面的窝叫什么 灰飞烟灭是什么意思 缺钾是什么原因引起的
来月经腰酸腰痛什么原因造成的 柠檬水喝多了有什么坏处 男人硬不起来是什么原因 鼻子歪了是什么原因 叫床是什么
吃什么补脑子增强记忆力最快 充电宝充电慢是什么原因 异类是什么意思 人中发红是什么原因 拉黑色的屎是什么原因
把头是什么意思hcv8jop7ns7r.cn 孕妇胃痛可以吃什么药hcv7jop9ns2r.cn 绿加红是什么颜色hcv8jop8ns7r.cn 鸡眼挂什么科hcv8jop8ns3r.cn 胃胀气是什么原因引起的naasee.com
五指毛桃根有什么功效hcv7jop7ns1r.cn 记忆力不好是什么原因hcv8jop3ns4r.cn 姨妈发黑量少什么原因hcv8jop6ns1r.cn 吃什么降肝火gysmod.com 日加一笔变成什么字bfb118.com
毛主席什么时候去世hcv8jop0ns2r.cn 蚕豆病不能吃什么药hcv9jop6ns0r.cn 15号来月经排卵期是什么时候hcv8jop0ns1r.cn 手抖是因为什么cj623037.com 心烦焦虑吃什么药hcv7jop4ns6r.cn
什么中药减肥hcv9jop5ns7r.cn 脖子痛是什么原因mmeoe.com 接济是什么意思hcv8jop0ns6r.cn 8月24是什么星座hcv8jop2ns0r.cn 贵州的特产是什么hcv9jop8ns0r.cn
百度