什么药止痒效果最好| 镜花水月是什么意思| 04年属猴的是什么命| 健康证检查什么| 鲨鱼用什么呼吸| 咖啡渣子有什么用途| 为什么不建议吃三代头孢| evisu是什么牌子| 50年是什么婚| 儿童水杯什么材质好| 酸奶能做什么美食| 总是干咳是什么原因| 怀孕第一个月吃什么对胎儿好| 什么叫品牌| 女生痛经有什么办法缓解| 似曾相识是什么意思| 大败毒胶囊主治什么病| 疟疾病的症状是什么样| 康复新液是什么做的| 你会不会突然的出现是什么歌| 起死回生是什么意思| 品质是什么| 宫腔粘连带是什么意思| 遵命是什么意思| 欧字五行属什么| 6月14日什么星座| 8月9号是什么星座| 恩怨是什么意思| 什么样的河流| 夏令时什么时候开始和结束| 中线是什么意思| 什么他妈的叫他妈的惊喜| wear是什么意思| 藏医最擅长治什么病| 看见蛇过马路什么征兆| 日落是什么时辰| 梦见来月经是什么意思| 百香果什么时候开花结果| 白天为什么能看到月亮| 唯有读书高的前一句是什么| 蚂蚁的触角有什么作用| 大学毕业送什么花| 小腹疼痛是什么原因| 慢性病是什么意思| 葡萄糖偏高有什么问题| 尿路感染吃什么药消炎| 圆脸适合什么发型好看| 姨太太是什么意思| 发烧吃什么消炎药| 肠胃炎发烧吃什么药| 3n是什么意思| 为什么女人比男人长寿| 掉头发去医院挂什么科| 猪苓是什么东西| 卧室养什么花好| 米娜桑什么意思| 输氨基酸对身体有什么好处和坏处| 五级士官是什么级别| 蚕豆病是什么病| 杜牧号什么| 两规是什么意思| 赛马不相马什么意思| 男人左眼跳是什么预兆| 补铁的水果有什么| 动态密码是什么| 球蛋白是什么| 腊猪脚炖什么好吃| 为什么女追男没好下场| 间歇是什么意思| 磕碜是什么意思| 什么是伴手礼| 白斑不能吃什么| tony是什么意思| 小孩容易出汗是什么原因| 解痉是什么意思| 66什么意思| 文盲是什么意思| 城隍庙是什么神| 玫瑰糠疹吃什么药| mid是什么意思| 0是什么| 凿壁偷光形容什么| 耳朵响吃什么药| 什么叫慢阻肺| 查询电话号码拨打什么| 人这一生什么最重要| 什么样的男人不能嫁| 恩师是什么意思| 奢侈的近义词是什么| dan什么意思| 大姨妈黑色是什么原因| 心脏疼是什么感觉| bug是什么意思中文翻译| u是什么意思| 桃树什么时候修剪最好| 心衰竭吃什么药效果好| 大吉大利是什么生肖| 姜黄与生姜有什么区别| 胎动少是什么原因| 男人鼻头有痣代表什么| absolue是兰蔻的什么产品| 名侦探柯南什么时候完结| 舌头边上有锯齿状是什么原因| 1月17日是什么星座| 做梦梦见捡钱是什么意思| 血吸虫是什么动物| 寒热重症是什么病| 花胶和什么煲汤最适合| 嘴里起血泡是什么原因| 醋泡脚有什么好处和坏处| 玥是什么意思| 跛脚是什么意思| 怀孕期间吃什么对胎儿发育好| 电饭煲内胆什么材质好| 探病送什么花| 直肠息肉有什么症状| 喝啤酒吃什么菜最好| 冰火两重天是什么意思| 虎女配什么生肖最好| 胸部疼挂什么科| 肠道感染有什么症状| 八月是什么星座| 为什么吃鸽子刀口长得快| 尿味重是什么原因| 什么叫肺间质病变| 扁桃体肥大吃什么药好得快| 红花代表什么生肖| 岁月蹉跎什么意思| 八面玲珑是什么意思| 什么是有机蔬菜| 更年期是什么时候| abob白色药片是什么药| 牛和什么属相相冲| 99新是什么意思| 桃字五行属什么| 吃什么止血| 足字旁的字有什么| 喝罗汉果水有什么功效| 雾化是什么意思| 婚检男性检查什么| 1956属什么生肖| 河南有什么市| 爱哭的人是什么性格| 0是偶数吗为什么| 什么动物最聪明| 黄金是什么生肖| 人造海蜇丝是什么做的| 侏儒症是什么原因引起的| 甲状腺双叶回声欠均匀是什么意思| 前夫是什么意思| 咳嗽吃什么药| 胃幽门螺旋杆菌吃什么药| 最多笔画的汉字是什么| 胚由什么组成| 测骨龄去医院挂什么科| 吃桂圆干有什么好处和坏处| 中国的国服是什么服装| 绿杨春属于什么茶| 欢喜冤家是什么意思| 十月十四是什么星座| 吃什么不会胖又减肥| 脑梗做什么检查最准确| 纵隔子宫是什么意思| 姨妈可以吃什么水果| 鼻子经常流鼻涕是什么原因| 小白兔是什么意思| 轻度三尖瓣反流是什么| 眼角痒用什么眼药水好| 狗肉配什么菜好吃| 什么时间吃水果比较好| 生气吃什么药可以顺气| 公筷是什么意思| 什么是阴吹| 黄芪和枸杞泡水喝有什么作用| 头晕脑胀是什么原因| 容貌是什么意思| 孵化基地是什么意思| 血压低是什么原因| 什么的拳头| %是什么意思| 为什么端午安康| 指南针为什么不叫指北针| 心穷是什么意思| 花重锦官城的重是什么意思| 喜面是什么意思| ba是什么元素| 氩气是什么气体| 什么是甲减有什么症状| 马住什么意思| 什么叫同工同酬| 清宫和无痛人流有什么区别| 吃薄荷对人身体有什么好处| 腿毛有什么用| 垂体泌乳素高是什么原因| 高胆固醇血症是什么病| 早射吃什么药可以调理| 王不留行是什么| 你什么都可以| 淋巴瘤是什么症状| 金银花什么时候采摘最好| 荷花是什么形状的| 垂体分泌什么激素| 葬礼穿什么衣服| 腱鞘炎看什么科| 欲望是什么| 为什么长火疖子| 今年流行什么发型女| 狗狗呕吐吃什么药| 肌酸粉有什么作用| 外阴痒用什么洗| 雄起是什么意思| 毕业送老师什么礼物好| 武汉都有什么大学| 激光点痣后需要注意什么| 疱疹吃什么药见效快| 怀孕可以吃什么水果| 若无其事的若是什么意思| 2007年是什么生肖| 怕冷吃什么药| 屁股痒是什么原因| 宝典是什么意思| apk是什么格式| 过氧化氢阳性是什么意思| 月亮星座代表什么意思| 痛风能喝什么饮料| 头昏是什么原因| 为什么受伤总是我| 日复一日是什么意思| 带环了月经推迟不来什么原因| 荨麻疹长什么样图片| 腋下检查挂什么科| 阴阳是什么意思| 甘露丸是什么| 结婚唱什么歌送给新人| 4月25号什么星座| 绿色食品是什么意思| 教研是什么意思| 胃出血大便是什么颜色| 早泄吃什么好| 白内障是什么原因引起的| 水鸭跟什么煲汤最佳| 6月3号是什么星座| 肌底液是干什么用的| 增加免疫力吃什么| 吃什么皮肤白的最快| 恶心反胃想吐吃什么药| 硫磺是什么东西| 北加田加共是什么字| 什么叫出柜| 戒指中指代表什么意思| 霰粒肿用什么药| 解脲脲原体是什么病| 打酱油是什么意思| 黑猫进家门预示着什么| 用印是什么意思| 归脾丸什么时候吃效果最好| xy什么意思| 尿潜血是什么意思| 定向招生是什么意思| 肛门不舒服是什么原因| 邓超什么星座的| bic是什么意思| 一个口一个麦念什么| 夏至有什么习俗| 百度

榴莲不可以和什么食物一起吃

百度 文稿应主题新颖,论点鲜明,论据(数据)可靠,结论明确,具有创新性、科学性和逻辑性。

Digital signal processing (DSP) is the use of digital processing, such as by computers or more specialized digital signal processors, to perform a wide variety of signal processing operations. The digital signals processed in this manner are a sequence of numbers that represent samples of a continuous variable in a domain such as time, space, or frequency. In digital electronics, a digital signal is represented as a pulse train,[1][2] which is typically generated by the switching of a transistor.[3]

Digital signal processing and analog signal processing are subfields of signal processing. DSP applications include audio and speech processing, sonar, radar and other sensor array processing, spectral density estimation, statistical signal processing, digital image processing, data compression, video coding, audio coding, image compression, signal processing for telecommunications, control systems, biomedical engineering, and seismology, among others.

DSP can involve linear or nonlinear operations. Nonlinear signal processing is closely related to nonlinear system identification[4] and can be implemented in the time, frequency, and spatio-temporal domains.

The application of digital computation to signal processing allows for many advantages over analog processing in many applications, such as error detection and correction in transmission as well as data compression.[5] Digital signal processing is also fundamental to digital technology, such as digital telecommunication and wireless communications.[6] DSP is applicable to both streaming data and static (stored) data.

Signal sampling

edit

To digitally analyze and manipulate an analog signal, it must be digitized with an analog-to-digital converter (ADC).[7] Sampling is usually carried out in two stages, discretization and quantization. Discretization means that the signal is divided into equal intervals of time, and each interval is represented by a single measurement of amplitude. Quantization means each amplitude measurement is approximated by a value from a finite set. Rounding real numbers to integers is an example.

The Nyquist–Shannon sampling theorem states that a signal can be exactly reconstructed from its samples if the sampling frequency is greater than twice the highest frequency component in the signal. In practice, the sampling frequency is often significantly higher than this.[8] It is common to use an anti-aliasing filter to limit the signal bandwidth to comply with the sampling theorem, however careful selection of this filter is required because the reconstructed signal will be the filtered signal plus residual aliasing from imperfect stop band rejection instead of the original (unfiltered) signal.

Theoretical DSP analyses and derivations are typically performed on discrete-time signal models with no amplitude inaccuracies (quantization error), created by the abstract process of sampling. Numerical methods require a quantized signal, such as those produced by an ADC. The processed result might be a frequency spectrum or a set of statistics. But often it is another quantized signal that is converted back to analog form by a digital-to-analog converter (DAC).

Domains

edit

DSP engineers usually study digital signals in one of the following domains: time domain (one-dimensional signals), spatial domain (multidimensional signals), frequency domain, and wavelet domains. They choose the domain in which to process a signal by making an informed assumption (or by trying different possibilities) as to which domain best represents the essential characteristics of the signal and the processing to be applied to it. A sequence of samples from a measuring device produces a temporal or spatial domain representation, whereas a discrete Fourier transform produces the frequency domain representation.

Time and space domains

edit

Time domain refers to the analysis of signals with respect to time. Similarly, space domain refers to the analysis of signals with respect to position, e.g., pixel location for the case of image processing.

The most common processing approach in the time or space domain is enhancement of the input signal through a method called filtering. Digital filtering generally consists of some linear transformation of a number of surrounding samples around the current sample of the input or output signal. The surrounding samples may be identified with respect to time or space. The output of a linear digital filter to any given input may be calculated by convolving the input signal with an impulse response.

Frequency domain

edit

Signals are converted from time or space domain to the frequency domain usually through use of the Fourier transform. The Fourier transform converts the time or space information to a magnitude and phase component of each frequency. With some applications, how the phase varies with frequency can be a significant consideration. Where phase is unimportant, often the Fourier transform is converted to the power spectrum, which is the magnitude of each frequency component squared.

The most common purpose for analysis of signals in the frequency domain is analysis of signal properties. The engineer can study the spectrum to determine which frequencies are present in the input signal and which are missing. Frequency domain analysis is also called spectrum- or spectral analysis.

Filtering, particularly in non-realtime work, can also be achieved in the frequency domain, applying the filter and then converting back to the time domain. This can be an efficient implementation and can give essentially any filter response, including excellent approximations to brickwall filters.

There are some commonly used frequency domain transformations. For example, the cepstrum converts a signal to the frequency domain through Fourier transform, takes the logarithm, then applies another Fourier transform. This emphasizes the harmonic structure of the original spectrum.

Z-plane analysis

edit

Digital filters come in both infinite impulse response (IIR) and finite impulse response (FIR) types. Whereas FIR filters are always stable, IIR filters have feedback loops that may become unstable and oscillate. The Z-transform provides a tool for analyzing stability issues of digital IIR filters. It is analogous to the Laplace transform, which is used to design and analyze analog IIR filters.

Autoregression analysis

edit

A signal is represented as linear combination of its previous samples. Coefficients of the combination are called autoregression coefficients. This method has higher frequency resolution and can process shorter signals compared to the Fourier transform.[9] Prony's method can be used to estimate phases, amplitudes, initial phases and decays of the components of signal.[10][9] Components are assumed to be complex decaying exponents.[10][9]

Time-frequency analysis

edit

A time-frequency representation of a signal can capture both temporal evolution and frequency structure of the signal. Temporal and frequency resolution are limited by the uncertainty principle and the tradeoff is adjusted by the width of the analysis window. Linear techniques such as Short-time Fourier transform, wavelet transform, filter bank,[11] non-linear (e.g., Wigner–Ville transform[10]) and autoregressive methods (e.g. segmented Prony method)[10][12][13] are used for representation of signal on the time-frequency plane. Non-linear and segmented Prony methods can provide higher resolution, but may produce undesirable artifacts. Time-frequency analysis is usually used for analysis of non-stationary signals. For example, methods of fundamental frequency estimation, such as RAPT and PEFAC[14] are based on windowed spectral analysis.

Wavelet

edit
 
An example of the 2D discrete wavelet transform that is used in JPEG2000. The original image is high-pass filtered, yielding the three large images, each describing local changes in brightness (details) in the original image. It is then low-pass filtered and downscaled, yielding an approximation image; this image is high-pass filtered to produce the three smaller detail images, and low-pass filtered to produce the final approximation image in the upper-left.

In numerical analysis and functional analysis, a discrete wavelet transform is any wavelet transform for which the wavelets are discretely sampled. As with other wavelet transforms, a key advantage it has over Fourier transforms is temporal resolution: it captures both frequency and location information. The accuracy of the joint time-frequency resolution is limited by the uncertainty principle of time-frequency.

Empirical mode decomposition

edit

Empirical mode decomposition is based on decomposition signal into intrinsic mode functions (IMFs). IMFs are quasi-harmonical oscillations that are extracted from the signal.[15]

Implementation

edit

DSP algorithms may be run on general-purpose computers[16] and digital signal processors.[17] DSP algorithms are also implemented on purpose-built hardware such as application-specific integrated circuit (ASICs).[18] Additional technologies for digital signal processing include more powerful general-purpose microprocessors, graphics processing units, field-programmable gate arrays (FPGAs), digital signal controllers (mostly for industrial applications such as motor control), and stream processors.[19]

For systems that do not have a real-time computing requirement and the signal data (either input or output) exists in data files, processing may be done economically with a general-purpose computer. This is essentially no different from any other data processing, except DSP mathematical techniques (such as the DCT and FFT) are used, and the sampled data is usually assumed to be uniformly sampled in time or space. An example of such an application is processing digital photographs with software such as Photoshop.

When the application requirement is real-time, DSP is often implemented using specialized or dedicated processors or microprocessors, sometimes using multiple processors or multiple processing cores. These may process data using fixed-point arithmetic or floating point. For more demanding applications FPGAs may be used.[20] For the most demanding applications or high-volume products, ASICs might be designed specifically for the application.

Parallel implementations of DSP algorithms, utilizing multi-core CPU and many-core GPU architectures, are developed to improve the performances in terms of latency of these algorithms.[21]

Native processing is done by the computer's CPU rather than by DSP or outboard processing, which is done by additional third-party DSP chips located on extension cards or external hardware boxes or racks. Many digital audio workstations such as Logic Pro, Cubase, Digital Performer and Pro Tools LE use native processing. Others, such as Pro Tools HD, Universal Audio's UAD-1 and TC Electronic's Powercore use DSP processing.

Applications

edit

General application areas for DSP include

Specific examples include speech coding and transmission in digital mobile phones, room correction of sound in hi-fi and sound reinforcement applications, analysis and control of industrial processes, medical imaging such as CAT scans and MRI, audio crossovers and equalization, digital synthesizers, and audio effects units.[22] DSP has been used in hearing aid technology since 1996, which allows for automatic directional microphones, complex digital noise reduction, and improved adjustment of the frequency response.[23]

Techniques

edit
edit

Further reading

edit
  • Ahmed, Nasir; Rao, Kamisetty Ramamohan (7 August 1975). "Orthogonal transforms for digital signal processing". ICASSP '76. IEEE International Conference on Acoustics, Speech, and Signal Processing. Vol. 1. New York: Springer-Verlag. pp. 136–140. doi:10.1109/ICASSP.1976.1170121. ISBN 978-3540065562. LCCN 73018912. OCLC 438821458. OL 22806004M. S2CID 10776771.
  • Jonathan M. Blackledge, Martin Turner: Digital Signal Processing: Mathematical and Computational Methods, Software Development and Applications, Horwood Publishing, ISBN 1-898563-48-9
  • James D. Broesch: Digital Signal Processing Demystified, Newnes, ISBN 1-878707-16-7
  • Dyer, Stephen A.; Harms, Brian K. (13 August 1993). "Digital Signal Processing". In Yovits, Marshall C. (ed.). Advances in Computers. Vol. 37. Academic Press. pp. 59–118. doi:10.1016/S0065-2458(08)60403-9. ISBN 978-0120121373. ISSN 0065-2458. LCCN 59015761. OCLC 858439915. OL 10070096M.
  • Paul M. Embree, Damon Danieli: C++ Algorithms for Digital Signal Processing, Prentice Hall, ISBN 0-13-179144-3
  • Hari Krishna Garg: Digital Signal Processing Algorithms, CRC Press, ISBN 0-8493-7178-3
  • P. Gaydecki: Foundations Of Digital Signal Processing: Theory, Algorithms And Hardware Design, Institution of Electrical Engineers, ISBN 0-85296-431-5
  • Ashfaq Khan: Digital Signal Processing Fundamentals, Charles River Media, ISBN 1-58450-281-9
  • Sen M. Kuo, Woon-Seng Gan: Digital Signal Processors: Architectures, Implementations, and Applications, Prentice Hall, ISBN 0-13-035214-4
  • Paul A. Lynn, Wolfgang Fuerst: Introductory Digital Signal Processing with Computer Applications, John Wiley & Sons, ISBN 0-471-97984-8
  • Richard G. Lyons: Understanding Digital Signal Processing, Prentice Hall, ISBN 0-13-108989-7
  • Vijay Madisetti, Douglas B. Williams: The Digital Signal Processing Handbook, CRC Press, ISBN 0-8493-8572-5
  • James H. McClellan, Ronald W. Schafer, Mark A. Yoder: Signal Processing First, Prentice Hall, ISBN 0-13-090999-8
  • Bernard Mulgrew, Peter Grant, John Thompson: Digital Signal Processing – Concepts and Applications, Palgrave Macmillan, ISBN 0-333-96356-3
  • Boaz Porat: A Course in Digital Signal Processing, Wiley, ISBN 0-471-14961-6
  • John G. Proakis, Dimitris Manolakis: Digital Signal Processing: Principles, Algorithms and Applications, 4th ed, Pearson, April 2006, ISBN 978-0131873742
  • John G. Proakis: A Self-Study Guide for Digital Signal Processing, Prentice Hall, ISBN 0-13-143239-7
  • Charles A. Schuler: Digital Signal Processing: A Hands-On Approach, McGraw-Hill, ISBN 0-07-829744-3
  • Doug Smith: Digital Signal Processing Technology: Essentials of the Communications Revolution, American Radio Relay League, ISBN 0-87259-819-5
  • Smith, Steven W. (2002). Digital Signal Processing: A Practical Guide for Engineers and Scientists. Newnes. ISBN 0-7506-7444-X.
  • Stein, Jonathan Yaakov (2025-08-06). Digital Signal Processing, a Computer Science Perspective. Wiley. ISBN 0-471-29546-9.
  • Stergiopoulos, Stergios (2000). Advanced Signal Processing Handbook: Theory and Implementation for Radar, Sonar, and Medical Imaging Real-Time Systems. CRC Press. ISBN 0-8493-3691-0.
  • Van De Vegte, Joyce (2001). Fundamentals of Digital Signal Processing. Prentice Hall. ISBN 0-13-016077-6.
  • Oppenheim, Alan V.; Schafer, Ronald W. (2001). Discrete-Time Signal Processing. Pearson. ISBN 1-292-02572-7.
  • Hayes, Monson H. Statistical digital signal processing and modeling. John Wiley & Sons, 2009. (with MATLAB scripts)

References

edit
  1. ^ B. SOMANATHAN NAIR (2002). Digital electronics and logic design. PHI Learning Pvt. Ltd. p. 289. ISBN 9788120319561. Digital signals are fixed-width pulses, which occupy only one of two levels of amplitude.
  2. ^ Joseph Migga Kizza (2005). Computer Network Security. Springer Science & Business Media. ISBN 9780387204734.
  3. ^ 2000 Solved Problems in Digital Electronics. Tata McGraw-Hill Education. 2005. p. 151. ISBN 978-0-07-058831-8.
  4. ^ Billings, Stephen A. (Sep 2013). Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains. UK: Wiley. ISBN 978-1-119-94359-4.
  5. ^ Broesch, James D.; Stranneby, Dag; Walker, William (2025-08-06). Digital Signal Processing: Instant access (1 ed.). Butterworth-Heinemann-Newnes. p. 3. ISBN 9780750689762.
  6. ^ Srivastava, Viranjay M.; Singh, Ghanshyam (2013). MOSFET Technologies for Double-Pole Four-Throw Radio-Frequency Switch. Springer Science & Business Media. p. 1. ISBN 9783319011653.
  7. ^ Walden, R. H. (1999). "Analog-to-digital converter survey and analysis". IEEE Journal on Selected Areas in Communications. 17 (4): 539–550. doi:10.1109/49.761034.
  8. ^ Candes, E. J.; Wakin, M. B. (2008). "An Introduction To Compressive Sampling". IEEE Signal Processing Magazine. 25 (2): 21–30. Bibcode:2008ISPM...25...21C. doi:10.1109/MSP.2007.914731. S2CID 1704522.
  9. ^ a b c Marple, S. Lawrence (2025-08-06). Digital Spectral Analysis: With Applications. Englewood Cliffs, N.J: Prentice Hall. ISBN 978-0-13-214149-9.
  10. ^ a b c d Ribeiro, M.P.; Ewins, D.J.; Robb, D.A. (2025-08-06). "Non-stationary analysis and noise filtering using a technique extended from the original Prony method". Mechanical Systems and Signal Processing. 17 (3): 533–549. Bibcode:2003MSSP...17..533R. doi:10.1006/mssp.2001.1399. ISSN 0888-3270. Retrieved 2025-08-06.
  11. ^ So, Stephen; Paliwal, Kuldip K. (2005). "Improved noise-robustness in distributed speech recognition via perceptually-weighted vector quantisation of filterbank energies". Ninth European Conference on Speech Communication and Technology.
  12. ^ Mitrofanov, Georgy; Priimenko, Viatcheslav (2025-08-06). "Prony Filtering of Seismic Data". Acta Geophysica. 63 (3): 652–678. Bibcode:2015AcGeo..63..652M. doi:10.1515/acgeo-2015-0012. ISSN 1895-6572. S2CID 130300729.
  13. ^ Mitrofanov, Georgy; Smolin, S. N.; Orlov, Yu. A.; Bespechnyy, V. N. (2020). "Prony decomposition and filtering". Geology and Mineral Resources of Siberia (2): 55–67. doi:10.20403/2078-0575-2020-2-55-67. ISSN 2078-0575. S2CID 226638723. Retrieved 2025-08-06.
  14. ^ Gonzalez, Sira; Brookes, Mike (February 2014). "PEFAC - A Pitch Estimation Algorithm Robust to High Levels of Noise". IEEE/ACM Transactions on Audio, Speech, and Language Processing. 22 (2): 518–530. doi:10.1109/TASLP.2013.2295918. ISSN 2329-9290. S2CID 13161793. Retrieved 2025-08-06.
  15. ^ Huang, N. E.; Shen, Z.; Long, S. R.; Wu, M. C.; Shih, H. H.; Zheng, Q.; Yen, N.-C.; Tung, C. C.; Liu, H. H. (2025-08-06). "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 454 (1971): 903–995. Bibcode:1998RSPSA.454..903H. doi:10.1098/rspa.1998.0193. ISSN 1364-5021. S2CID 1262186. Retrieved 2025-08-06.
  16. ^ Weipeng, Jiang; Zhiqiang, He; Ran, Duan; Xinglin, Wang (August 2012). "Major optimization methods for TD-LTE signal processing based on general purpose processor". 7th International Conference on Communications and Networking in China. pp. 797–801. doi:10.1109/ChinaCom.2012.6417593. ISBN 978-1-4673-2699-5. S2CID 17594911.
  17. ^ Zaynidinov, Hakimjon; Ibragimov, Sanjarbek; Tojiboyev, Gayrat; Nurmurodov, Javohir (2025-08-06). "Efficiency of Parallelization of Haar Fast Transform Algorithm in Dual-Core Digital Signal Processors". 2021 8th International Conference on Computer and Communication Engineering (ICCCE). IEEE. pp. 7–12. doi:10.1109/ICCCE50029.2021.9467190. ISBN 978-1-7281-1065-3. S2CID 236187914.
  18. ^ Lyakhov, P.A. (June 2023). "Area-Efficient digital filtering based on truncated multiply-accumulate units in residue number system 2 n - 1 , 2 n , 2 n + 1". Journal of King Saud University - Computer and Information Sciences. 35 (6): 101574. doi:10.1016/j.jksuci.2023.101574.
  19. ^ Stranneby, Dag; Walker, William (2004). Digital Signal Processing and Applications (2nd ed.). Elsevier. ISBN 0-7506-6344-8.
  20. ^ JPFix (2006). "FPGA-Based Image Processing Accelerator". Retrieved 2025-08-06.
  21. ^ Kapinchev, Konstantin; Bradu, Adrian; Podoleanu, Adrian (December 2019). "Parallel Approaches to Digital Signal Processing Algorithms with Applications in Medical Imaging". 2019 13th International Conference on Signal Processing and Communication Systems (ICSPCS) (PDF). pp. 1–7. doi:10.1109/ICSPCS47537.2019.9008720. ISBN 978-1-7281-2194-9. S2CID 211686462.
  22. ^ Rabiner, Lawrence R.; Gold, Bernard (1975). Theory and application of digital signal processing. Englewood Cliffs, NJ: Prentice-Hall, Inc. ISBN 978-0139141010.
  23. ^ Kerckhoff, Jessica; Listenberger, Jennifer; Valente, Michael (October 1, 2008). "Advances in hearing aid technology". Contemporary Issues in Communication Science and Disorders. 35: 102–112. doi:10.1044/cicsd_35_F_102.
神经性耳聋是什么原因造成的 多种维生素什么牌子的效果最好 情绪什么意思 皮肤的八大功能是什么 肌酸什么时候喝比较好
内招是什么意思 什么样的降落伞 51岁属什么生肖 盐酸利多卡因是什么药 人体缺钾是什么原因引起的
脑供血不足用什么药效果最好 例假为什么第一天最疼 飞机联程票是什么意思 四川有什么好大学 十万个为什么内容
7月22号是什么星座 内透声差是什么意思 什么时间英语 胰岛是什么器官 锁骨是什么位置
大疱病是什么病hcv9jop1ns8r.cn 明知故犯的故是什么意思hcv7jop6ns4r.cn 血透是什么意思hcv9jop6ns5r.cn 身体缺糖有什么症状hcv8jop7ns0r.cn 眼睛模糊是什么原因引起的hcv8jop8ns4r.cn
办健康证挂什么科hcv8jop9ns9r.cn 什么人容易得心脏病hcv9jop6ns9r.cn 夏的五行属什么hcv8jop9ns6r.cn 大便特别臭是什么原因jingluanji.com 吃二甲双胍为什么会瘦hcv7jop7ns3r.cn
接触性皮炎用什么药膏cj623037.com c1和c2有什么区别zhiyanzhang.com 晚上20点是什么时辰hcv8jop7ns2r.cn 宝宝发烧挂什么科hcv9jop1ns6r.cn 琳琅是什么意思hcv8jop9ns1r.cn
支行行长什么级别hcv8jop6ns2r.cn 集成灶什么品牌最好hcv8jop6ns5r.cn copd是什么意思hcv7jop9ns1r.cn 胎记长什么样hcv9jop5ns4r.cn generic是什么意思hcv9jop6ns4r.cn
百度