适得其反什么意思| 尿潜血十一是什么意思| 月经前一周失眠是什么原因| 解脲脲原体阳性是什么病| 哺乳期头疼可以吃什么药| 气阴两虚吃什么中成药| 经常放屁吃什么药| 夜间睡觉口干是什么原因| 酸麻胀痛痒各代表什么| 对峙什么意思| 核磁共振是查什么的| 为什么一到晚上就咳嗽| 肌腱属于什么组织| 灭活疫苗是什么意思| 肝硬化挂什么科| 弦子为什么嫁给李茂| 为什么会得面瘫| 玛咖是什么| 尿胆红素阳性是什么意思| 右下腹疼痛挂什么科| 豆角是什么| 旺五行属什么| 梦见捡了好多钱是什么预兆| 临期是什么意思| 狼吞虎咽是什么生肖| 什么方法可以治打嗝| 鼻梁骨骨折属于什么伤| 头皮痒用什么止痒最好| 21什么意思| 琮字五行属什么| 什么叫强迫症| 皮肤黑的人穿什么颜色的衣服好看| 小孩咳嗽有痰吃什么药| 肌肉拉伤有什么症状| 女人腰疼是什么原因引起的| 女生是t是什么意思| 金色和什么颜色搭配好看| 洋葱什么时候种| 客家人是什么意思| crayon什么意思| 什么是包茎| 拉肚子为什么会发烧| 中年男人遗精是什么原因| 英语四级是什么水平| 催乳素过高是什么原因| 焱加木念什么| 红枣和什么不能一起吃| 早上跑步有什么好处| 水清则无鱼什么意思| 着床出血是什么颜色| 筛查是什么意思| 鸡尖是什么| 惠字五行属什么| 爱因斯坦是什么学家| 美甲什么颜色显手白| 四月十六日是什么星座| 芥蒂什么意思| 什么宠物好养又干净| 霸王花是什么花| 切除子宫有什么影响| 漏尿是什么原因造成的| 脂肪肝吃什么药好| 老生常谈是什么意思| 最好的补钙方法是什么| 叶酸偏高有什么影响| py交易是什么意思| 妊娠高血压对胎儿有什么影响| 证件照一般是什么底色| 什么是微单相机| 十全十美指什么生肖| 大拇指麻木是什么原因| 大葱炒什么好吃| blissful是什么意思| 上午十点到十一点是什么时辰| 跳脱是什么意思| 喝莓茶对身体有什么好处| 睾丸突然疼痛什么原因| 梦见偷鸡是什么预兆| 救人一命胜造七级浮屠是什么意思| 秦始皇原名叫什么| 全可以加什么偏旁| 家里进黄鼠狼是什么预兆| 地雷是什么意思| 蓝本是什么意思| 眼白发蓝是什么原因| 层峦叠翠的意思是什么| 乳腺结节低回声是什么意思| copd是什么病的简称| 药食同源是什么意思| 包裹是什么意思| 怀孕吃什么菜最有营养| 耳石症是什么原因| 赤色是什么颜色| 咳嗽雾化用什么药| 什么是腹式呼吸| 菊花什么时候开放| 12月21日什么星座| 暂缓参军是什么意思| 做梦吃肉是什么征兆| 强迫是什么意思| 范仲淹世称什么| 什么茶养胃| 感冒喝什么饮料| 洗面奶和洁面乳有什么区别| 头部mra是什么检查| 查凝血酶能查出什么病| 火碱是什么| 日本樱花什么时候开| 格色是什么意思| 味素是什么| 什么是华人| 股癣用什么药膏好得快| 摸摸唱是什么| 2月11号是什么星座| 阴虚火旺什么意思| 吃榴莲有什么好处| ket是什么| 1970属什么| 杏鲍菇不能和什么一起吃| 水晶和玻璃有什么区别| 天安门以前叫什么| 心灵鸡汤什么意思| 肺部ct挂什么科| 鱿鱼是什么动物| 胎膜早破是什么意思| 复活节是什么意思| 小狗驱虫用什么药| 全日制专科是什么意思| 新房开火有什么讲究| 艺不压身是什么意思| 内能与什么有关| 耳什么目明| 什么叫根管治疗| 颈动脉硬化有什么症状| 不够时间好好来爱你是什么歌| 止汗药什么最好| 去心火吃什么药| 体重突然下降是什么原因| 溶液是什么| 胰腺低密度影什么意思| 肺结节吃什么药| 绿色和红色混合是什么颜色| 怀孕分泌物是什么颜色| 即使什么也什么| 头疼喝什么药| 入睡困难是什么原因| 定增是什么意思| 巨蟹跟什么星座最配| 脾胃虚吃什么好| 八是什么生肖| 舌根苔白厚腻是什么原因| 咳嗽有痰是什么原因| 大腿肌肉疼是什么原因| 呕什么意思| #NAME?| 7.2号是什么星座| 梯子是什么| 眼睑痉挛挂什么科| 开胸手术吃什么补元气| 女人长期喝西洋参有什么好处| 血脂高吃什么药效果好| 梦见蛇被别人打死是什么兆头| 老鼠最怕什么气味驱赶| 烧心是什么原因造成的| 送老师送什么礼物好| 比劫是什么意思| 石花菜是什么植物| 低钾会出现什么症状| 明目退翳是什么意思| 经常自言自语是什么原因| 四月初八是什么日子| 血栓是什么症状| 今年什么时候进伏天| 哈密瓜什么时候成熟| 射手男和什么座最配对| 头晕是什么病的征兆| 痛经挂什么科| 舌苔发黄吃什么药| 参考是什么意思| 头部ct能检查出什么| 尿酸高是什么原因| 复原乳是什么意思| 食管鳞状上皮增生是什么意思| 梅花代表什么象征意义| 致青春是什么意思| cfa是什么证书| 口嫌体正直什么意思| cro公司是什么意思| 梦见摘丝瓜有什么预兆| 黑米是什么米| 幽门杆菌是什么意思| 徐才厚什么级别| 头发长得快是什么原因| 肌肉酸痛吃什么药| 外阴瘙痒什么原因引起| 窝在沙发里是什么歌| 抱恙是什么意思| 补气血吃什么药效果好| 子宫内膜14mm说明什么| 做爱女生是什么感觉| 小狗什么时候换牙| 因为什么| 鳞状细胞是什么意思| 怀孕一个月内有什么反应| joway是什么牌子| 肝脏损伤会出现什么症状| 无限未来为什么不写了| 梦见死人的场面是什么兆头| 智齿是什么意思| 蚊子的天敌是什么| 秋天什么水果成熟| 不领情是什么意思| 血氧饱和度低于90有什么危害| 同工同酬什么意思| 什么叫磨玻璃结节| 手疼挂什么科| 十月份生日是什么星座| 布病挂什么科| 雾化对小孩有什么影响或者副作用| 眼白发青是什么原因| 男性尿道感染吃什么药| 茯苓是什么味道| 圣经是什么时候写的| 手信是什么意思| pq是什么意思| 威士忌兑什么饮料好喝| 病毒性扁桃体发炎吃什么药| 四十岁月经量少是什么原因| 月经来了喝红糖水有什么好处| 烂嘴角是什么原因| 火龙果什么时候成熟| 空虚什么意思| 手上三条线分别代表什么| 玉竹长什么样子| 猴子是什么颜色| 胃肠感冒吃什么药| 孕酮低吃什么可以提高孕酮| 食指戴戒指代表什么| 盆腔炎要做什么检查| 小孩吃鹅蛋有什么好处| 五光十色是什么生肖| 间接胆红素高是什么原因| 非即食是什么意思| 是指什么| 中医说的湿气重是什么意思| 2006年出生的是什么命| 四面受敌是什么动物| 回归是什么意思| 尊巴是什么| 高低肩挂什么科| 束缚什么意思| 拜土地公要准备什么东西| 生旦净末丑分别指什么| 南昌有什么好玩的| 半元音是什么意思| 御字五行属什么| 一什么杏子| 妇科千金片和三金片有什么区别| 蜗牛吃什么食物| 属鸡的幸运色是什么颜色| 天秤座后面是什么星座| 什么动物是站着睡觉的| 醒酒是什么意思| 阑尾炎应该挂什么科| 百度

倪妮的“桃花唇”有多美,你造吗?

百度 3月8日,全国社会保障基金理事会理事长楼继伟委员在政协大会发言中提出,要重视养老金中长期短板问题,建议尽快建立社保基金精算制度。

Difference in differences (DID[1] or DD[2]) is a statistical technique used in econometrics and quantitative research in the social sciences that attempts to mimic an experimental research design using observational study data, by studying the differential effect of a treatment on a 'treatment group' versus a 'control group' in a natural experiment.[3] It calculates the effect of a treatment (i.e., an explanatory variable or an independent variable) on an outcome (i.e., a response variable or dependent variable) by comparing the average change over time in the outcome variable for the treatment group to the average change over time for the control group. Although it is intended to mitigate the effects of extraneous factors and selection bias, depending on how the treatment group is chosen, this method may still be subject to certain biases (e.g., mean regression, reverse causality and omitted variable bias).

In contrast to a time-series estimate of the treatment effect on subjects (which analyzes differences over time) or a cross-section estimate of the treatment effect (which measures the difference between treatment and control groups), the difference in differences uses panel data to measure the differences, between the treatment and control group, of the changes in the outcome variable that occur over time.

General definition

edit
?

Difference in differences requires data measured from a treatment group and a control group at two or more different time periods, specifically at least one time period before "treatment" and at least one time period after "treatment." In the example pictured, the outcome in the treatment group is represented by the line P and the outcome in the control group is represented by the line S. The outcome (dependent) variable in both groups is measured at time 1, before either group has received the treatment (i.e., the independent or explanatory variable), represented by the points P1 and S1. The treatment group then receives or experiences the treatment and both groups are again measured at time 2. Not all of the difference between the treatment and control groups at time 2 (that is, the difference between P2 and S2) can be explained as being an effect of the treatment, because the treatment group and control group did not start out at the same point at time 1. DID, therefore, calculates the "normal" difference in the outcome variable between the two groups (the difference that would still exist if neither group experienced the treatment), represented by the dotted line Q. (Notice that the slope from P1 to Q is the same as the slope from S1 to S2.) The treatment effect is the difference between the observed outcome (P2) and the "normal" outcome (the difference between P2 and Q).

Formal definition

edit

Consider the model

?

where ? is the dependent variable for individual ? and time ?, ? is the group to which ? belongs (i.e. the treatment or the control group), and ? is short-hand for the dummy variable equal to 1 when the event described in ? is true, and 0 otherwise. In the plot of time versus ? by group, ? is the vertical intercept for the graph for ?, and ? is the time trend shared by both groups according to the parallel trend assumption (see Assumptions below). ? is the treatment effect, and ? is the residual term.

Consider the average of the dependent variable and dummy indicators by group and time:

?

and suppose for simplicity that ? and ?. Note that ? is not random; it just encodes how the groups and the periods are labeled. Then

?

The strict exogeneity assumption then implies that

?

Without loss of generality, assume that ? is the treatment group, and ? is the after period, then ? and ?, giving the DID estimator

?

which can be interpreted as the treatment effect of the treatment indicated by ?. Below it is shown how this estimator can be read as a coefficient in an ordinary least squares regression. The model described in this section is over-parametrized; to remedy that, one of the coefficients for the dummy variables can be set to 0, for example, we may set ?.

Assumptions

edit
?
Illustration of the parallel trend assumption

All the assumptions of the OLS model apply equally to DID. In addition, DID requires a parallel trend assumption. The parallel trend assumption says that ? are the same in both ? and ?. Given that the formal definition above accurately represents reality, this assumption automatically holds. However, a model with ? may well be more realistic. In order to increase the likelihood of the parallel trend assumption holding, a difference-in-differences approach is often combined with matching.[4] This involves 'matching' known 'treatment' units with simulated counterfactual 'control' units: characteristically equivalent units which did not receive treatment. By defining the Outcome Variable as a temporal difference (change in observed outcome between pre- and posttreatment periods), and matching multiple units in a large sample on the basis of similar pre-treatment histories, the resulting ATE (i.e. the ATT: Average Treatment Effect for the Treated) provides a robust difference-in-differences estimate of treatment effects. This serves two statistical purposes: firstly, conditional on pre-treatment covariates, the parallel trends assumption is likely to hold; and secondly, this approach reduces dependence on associated ignorability assumptions necessary for valid inference.

As illustrated to the right, the treatment effect is the difference between the observed value of y and what the value of y would have been with parallel trends, had there been no treatment. The Achilles' heel of DID is when something other than the treatment changes in one group but not the other at the same time as the treatment, implying a violation of the parallel trend assumption.

To guarantee the accuracy of the DID estimate, the composition of individuals of the two groups is assumed to remain unchanged over time. When using a DID model, various issues that may compromise the results, such as autocorrelation[5] and Ashenfelter dips, must be considered and dealt with.

Implementation

edit

The DID method can be implemented according to the table below, where the lower right cell is the DID estimator.

? ? ? Difference
? ? ? ?
? ? ? ?
Change ? ? ?

Running a regression analysis gives the same result. Consider the OLS model

?

where ? is a dummy variable for the period, equal to ? when ?, and ? is a dummy variable for group membership, equal to ? when ?. The composite variable ? is a dummy variable indicating when ?. Although it is not shown rigorously here, this is a proper parametrization of the model formal definition, furthermore, it turns out that the group and period averages in that section relate to the model parameter estimates as follows

?

where ? stands for conditional averages computed on the sample, for example, ? is the indicator for the after period, ? is an indicator for the control group. Note that ? is an estimate of the counterfactual rather than the impact of the control group. The control group is often used as a proxy for the counterfactual (see, Synthetic control method for a deeper understanding of this point). Thereby, ? can be interpreted as the impact of both the control group and the intervention's (treatment's) counterfactual. Similarly, ?, due to the parallel trend assumption, is also the same differential between the treatment and control group in ?. The above descriptions should not be construed to imply the (average) effect of only the control group, for ?, or only the difference of the treatment and control groups in the pre-period, for ?. As in Card and Krueger, below, a first (time) difference of the outcome variable ? eliminates the need for time-trend (i.e., ?) to form an unbiased estimate of ?, implying that ? is not actually conditional on the treatment or control group.[6] Consistently, a difference among the treatment and control groups would eliminate the need for treatment differentials (i.e., ?) to form an unbiased estimate of ?. This nuance is important to understand when the user believes (weak) violations of parallel pre-trend exist or in the case of violations of the appropriate counterfactual approximation assumptions given the existence of non-common shocks or confounding events. To see the relation between this notation and the previous section, consider as above only one observation per time period for each group, then

?

and so on for other values of ? and ?, which is equivalent to

?

But this is the expression for the treatment effect that was given in the formal definition and in the above table.

Variants of difference-in-difference frameworks include ones for staggered implementation of treatment as well as an estimator introduced for multiple time periods and other variations by Brantly Callaway and Pedro H.C. Sant'Anna.[7]

Example

edit

The Card and Krueger article on minimum wage in New Jersey, published in 1994,[6] is considered one of the most famous DID studies; Card was later awarded the 2021 Nobel Memorial Prize in Economic Sciences in part for this and related work. Card and Krueger compared employment in the fast food sector in New Jersey and in Pennsylvania, in February 1992 and in November 1992, after New Jersey's minimum wage rose from $4.25 to $5.05 in April 1992. Observing a change in employment in New Jersey only, before and after the treatment, would fail to control for omitted variables such as weather and macroeconomic conditions of the region. By including Pennsylvania as a control in a difference-in-differences model, any bias caused by variables common to New Jersey and Pennsylvania is implicitly controlled for, even when these variables are unobserved. Assuming that New Jersey and Pennsylvania have parallel trends over time, Pennsylvania's change in employment can be interpreted as the change New Jersey would have experienced, had they not increased the minimum wage, and vice versa. The evidence suggested that the increased minimum wage did not induce a decrease in employment in New Jersey, contrary to what some economic theory would suggest. The table below shows Card & Krueger's estimates of the treatment effect on employment, measured as FTEs (or full-time equivalents). Card and Krueger estimate that the $0.80 minimum wage increase in New Jersey led to an average 2.75 FTE increase in employment per store.

New Jersey Pennsylvania Difference
February 20.44 23.33 ?2.89
November 21.03 21.17 ?0.14
Change 0.59 ?2.16 2.75

A software example application of this research is found on the Stata's command -diff- [8] authored by Juan Miguel Villa.

See also

edit

References

edit
  1. ^ Abadie, A. (2005). "Semiparametric difference-in-differences estimators". Review of Economic Studies. 72 (1): 1–19. CiteSeerX?10.1.1.470.1475. doi:10.1111/0034-6527.00321. S2CID?8801460.
  2. ^ Bertrand, M.; Duflo, E.; Mullainathan, S. (2004). "How Much Should We Trust Differences-in-Differences Estimates?" (PDF). Quarterly Journal of Economics. 119 (1): 249–275. doi:10.1162/003355304772839588. S2CID?470667.
  3. ^ Angrist, J. D.; Pischke, J. S. (2008). Mostly Harmless Econometrics: An Empiricist's Companion. Princeton University Press. pp.?227–243. ISBN?978-0-691-12034-8.
  4. ^ Basu, Pallavi; Small, Dylan (2020). "Constructing a More Closely Matched Control Group in a Difference-in-Differences Analysis: Its Effect on History Interacting with Group Bias". Observational Studies. 6: 103–130. arXiv:2009.06935. doi:10.1353/obs.2020.0011. S2CID?221702893.
  5. ^ Bertrand, Marianne; Duflo, Esther; Mullainathan, Sendhil (2004). "How Much Should We Trust Differences-In-Differences Estimates?" (PDF). Quarterly Journal of Economics. 119 (1): 249–275. doi:10.1162/003355304772839588. S2CID?470667.
  6. ^ a b Card, David; Krueger, Alan B. (1994). "Minimum Wages and Employment: A Case Study of the Fast-Food Industry in New Jersey and Pennsylvania". American Economic Review. 84 (4): 772–793. JSTOR?2118030.
  7. ^ Callaway, Brantly; Sant’Anna, Pedro H. C. (2025-08-14). "Difference-in-Differences with multiple time periods". Journal of Econometrics. Themed Issue: Treatment Effect 1. 225 (2): 200–230. doi:10.1016/j.jeconom.2020.12.001. ISSN?0304-4076.
  8. ^ Villa, Juan M. (2016). "diff: Simplifying the estimation of difference-in-differences treatment effects". The Stata Journal. 16 (1): 52–71. doi:10.1177/1536867X1601600108. S2CID?124464636.

Further reading

edit
edit
感冒全身酸痛吃什么药 眼睛发黄什么原因 什么是冠心病 老婆饼为什么叫老婆饼 广西属于什么气候
飞克手表什么档次 起风疹的原因是什么引起的 甲状腺结节有什么症状表现 黄水疮是什么原因引起的 耳鸣是什么引起的
硒中毒有什么症状 梦见老公穿新衣服是什么意思 血小板高什么原因 和什么相什么 黄体酮不足吃什么药
贱痣是什么意思 挑疳积挑出来的是什么 纸片人是什么意思 酉是什么意思 charleskeith什么牌子
基础医学是什么hcv8jop6ns8r.cn 2月29日是什么星座aiwuzhiyu.com 鱼死了有什么预兆hcv9jop6ns1r.cn 黄昏是什么时辰hcv9jop2ns8r.cn 人体最大的细胞是什么hcv7jop9ns8r.cn
古天乐属什么生肖hcv7jop5ns2r.cn 男性尿道炎吃什么药hcv7jop6ns5r.cn 双侧乳腺小叶增生是什么意思hcv8jop6ns5r.cn 翩翩起舞是什么意思hcv8jop1ns3r.cn 小孩嘴唇发白是什么原因hcv9jop4ns5r.cn
硒是什么意思hcv8jop0ns4r.cn 低蛋白血症吃什么最快96micro.com 一花一草一世界的下一句是什么hcv7jop5ns4r.cn 风起云涌是什么生肖wmyky.com 雄黄是什么hcv7jop5ns6r.cn
梦到蛇预示着什么96micro.com 一树梨花压海棠什么意思hcv8jop7ns5r.cn 什么是小数hcv8jop1ns7r.cn 洗衣机什么牌子最好hcv8jop3ns9r.cn 夏天手上长小水泡是什么原因xianpinbao.com
百度