子官肌瘤吃什么食物| 鲨鱼为什么怕海豚| 宫颈病变是什么意思| 排骨汤什么时候放盐最好| 1月13日是什么星座| cfu是什么意思| 马陆吃什么| 智齿冠周炎吃什么药| 吃什么药怀孕最快| 吃什么去湿气最好最快| 咳嗽吃什么| 131是什么意思| 做四维需要准备什么| lcu是什么意思| 属牛本命佛是什么佛| 宫缩是什么意思| 恍惚是什么意思| 意识是什么| 小河虾吃什么| 阴虚吃什么中药| 手脚心热是什么原因| 终身为国是什么生肖| 皮肤病吃什么药最好| 浮想联翩什么意思| 轶字五行属什么| 胆碱酯酶低是什么原因| 胃肠炎吃什么药| 褒姒是什么意思| 蚝油是干什么用的| 什么人容易得骨肿瘤| 什么原因会怀上葡萄胎| 什么时候喝蜂蜜水最好| 失业是什么意思| 蜜蜡是什么材质| 眼袋肿了是什么原因| 什么全什么美| 先天性聋哑病属于什么遗传病| 10月1日什么星座| 肠化什么意思| 猴戏是什么意思| 智齿长什么样子图片| 不是省油的灯是什么意思| 2003是什么年| 汗疱疹是什么| 扁桃体肥大吃什么药好得快| 精疲力尽是什么意思| 1977属什么| 房性早搏是什么意思| 7月16日什么星座| 生抽和老抽有什么区别| 农历五月十八是什么星座| 6.22什么星座| 五不遇时是什么意思| 什么的旅行| 平板支撑有什么好处| 3月25日是什么星座| 面瘫看什么科室好| 巨峰葡萄为什么叫巨峰| 眼球发黄是什么原因| 家里为什么有蚂蚁| 护士资格证什么时候考| 鞭长莫及是什么意思| 韭黄炒什么好吃| 白羊座前面是什么星座| 螺旋杆菌有什么症状| 九头身是什么意思| 什么的麦田| 返利是什么意思| 四维彩超和大排畸有什么区别| 安踏属于什么档次| roma是什么牌子| 咽炎吃什么药好使| 蚊子怕什么| 生殖科检查什么| 三月二十是什么星座| 打下巴用什么玻尿酸最好| 至加秦是什么字| 支原体是什么病| 什么茶降火| 摆地摊卖什么最赚钱而且很受欢迎| 周公解梦梦见蛇是什么意思| 玻璃心什么意思| 步步为营是什么意思| 花木兰是什么朝代| 夏天可以干什么| 柯基犬为什么要断尾巴| 得了幽门螺旋杆菌有什么症状| 什么面什么刀| 头发硬适合什么发型| HPV高危亚型52阳性什么意思| 胆固醇高是什么引起的| 文雅是什么意思| NG是什么| squirrel是什么意思| 燕窝有什么营养价值| 什么季节减肥效果最快最好| 鸡胸是什么原因引起的| 法国的国花是什么花| 蹦蹦跳跳的动物是什么生肖| 阴离子是什么| 边界感是什么意思| 幼儿园转学需要什么手续| 促黄体生成素是什么| 搀扶什么意思| 尿白细胞阳性是什么意思| 血脂高是什么原因引起的| 月经前腰疼的厉害是什么原因| 七月一日什么节| 癌症病人吃什么| 闭门思过是什么意思| 竖起中指是什么意思| 不结婚的叫什么族| 心慌是什么原因导致的| 孩子为什么会得抽动症| 什么的猴子| 蔓越莓有什么功效和作用| 精液发红是什么原因| slogan是什么意思啊| 玉佛寺求什么最灵验| 属马五行属什么| pop店铺是什么意思| 后背疼是什么病的前兆| 反清复明的组织叫什么| 81年属什么生肖| 大姨妈来了吃什么水果好| 大黄米是什么米| 宫缩是什么意思| 风声鹤唳的意思是什么| 5月份什么星座| 祖师爷是什么意思| 鸽子补什么| 真菌感染皮肤病用什么药最好| 大拇指麻木是什么原因| 斗战胜佛是什么意思| 甘油三酯什么意思| 肾结石吃什么药好| 天梭属于什么档次| 耳朵响是什么原因| 当演员有什么要求| 朋友生日送什么礼物| 法国货币叫什么| 抵押什么意思| 塘鲺是什么鱼| 海星吃什么| 蟋蟀吃什么东西| 便秘吃什么蔬菜| 农历八月初五是什么星座| 吡唑醚菌酯治什么病| 清分日期是什么意思| 为什么会脱发| 中度贫血吃什么补血最快| 个子矮穿什么好看| 为什么腋下老是出汗| 玉簟秋是什么意思| 淋巴结稍大是什么意思| 吃什么可以治痔疮| php是什么语言| 毛肚是什么部位| 蓝灰色配什么颜色好看| 画龙点睛是什么生肖| 娇兰属于什么档次| 除了胃镜还有什么检查胃的方法吗| 农历七月初六是什么星座| 口服是什么意思| 营长是什么级别| 嬛嬛一袅楚宫腰什么意思| 左手经常发麻是什么原因引起的| 金字旁加全字念什么| 拉肚子可以吃什么药| 幽闭恐惧症是什么| 巴适是什么意思| 肠道菌群失调吃什么药| 膝关节积液吃什么药| 咖色配什么颜色好看| 便秘是什么原因引起的| 女性得疱疹是什么症状| 阴液是什么| 张宇的老婆叫什么名字| 送礼送什么水果| ferragamo是什么牌子| 脾的主要功能是什么| 血糖高吃什么主食好| 广西狗肉节是什么时候| 什么鱼吃鱼屎| 舌面上有裂纹是什么病| 自欺欺人是什么生肖| 老心慌是什么原因| 扎西德勒什么意思| 摆谱是什么意思| 讲义气是什么意思| 皮上长小肉疙瘩是什么| 蛋白低是什么原因| 浊气是什么意思| 过敏不能吃什么| 哮喘病是什么引起的| 什么蛋| 手指甲没有月牙是什么原因| 必有近忧是什么意思| 越五行属性是什么| 脚踝发黑是什么原因| 奥林匹克精神是什么| 食物不耐受是什么意思| 什么人容易得心梗| 澎湃的什么| 2001年什么年| 氯化钾主治什么病| 什么情况下吃丹参滴丸| 化疗能吃什么水果| 眉头下方有痣代表什么| 圣诞节是什么时候| 康妇炎胶囊主治什么| 壬寅年五行属什么| 低血糖平时要注意什么| 嗓子发炎吃什么| 膝盖后面的窝叫什么| 梦见一个人说明什么| 梦见打群架是什么意思| 手指关节肿胀是什么原因| ol是什么| 提高免疫力吃什么药| 梦见看电影是什么意思| 什么最解渴| 左胸疼什么原因| 事物是什么意思| 争议是什么意思| 和亲是什么意思| 总出虚汗是什么原因| 胃泌素释放肽前体高是什么原因| 盆腔积液是什么原因引起的| 什么叫便秘| 不服是什么意思| 嫁妆是什么意思| giada是什么牌子| 高什么远瞩| 天蝎座什么星象| 资治通鉴讲的是什么| 红领巾的含义是什么| 餐后血糖高是什么原因| 情绪波动大是什么原因| 阳虚吃什么好| 占是什么意思| 打嗝吃什么药效果好| refill是什么意思| smart什么牌子| vs是什么牌子| 护肝养肝吃什么药| 梦见火烧房子是什么预兆| 唇炎属于什么科| 红薯的别名叫什么| 双性人是什么意思| 茯苓是什么| 五脏六腑什么意思| 尿路结石吃什么药| nine什么意思| 伤口不愈合是什么原因| 北顶娘娘庙求什么灵验| gn是什么单位| 喝茶对人体有什么好处| 东坡肉是什么菜系| 什么月披星| 贱人的意思是什么意思| 甲状腺功能检查挂什么科| 乳腺发炎有什么症状| t代表什么| 百度

腾讯确认代理《火箭联盟》国区 官网正式上线

(Redirected from Confounding variable)
百度   3月底,香港春拍的大幕即将掀开,国际和内地的拍卖行将呈现新的精品。

In causal inference, a confounder[a] is a variable that influences both the dependent variable and independent variable, causing a spurious association. Confounding is a causal concept, and as such, cannot be described in terms of correlations or associations.[1][2][3] The existence of confounders is an important quantitative explanation why correlation does not imply causation. Some notations are explicitly designed to identify the existence, possible existence, or non-existence of confounders in causal relationships between elements of a system.

Whereas a mediator is a factor in the causal chain (above), a confounder is a spurious factor incorrectly implying causation (bottom)

Confounders are threats to internal validity.[4]

Example

edit

Let's assume that a trucking company owns a fleet of trucks made by two different manufacturers. Trucks made by one manufacturer are called "A Trucks" and trucks made by the other manufacturer are called "B Trucks." We want to find out whether A Trucks or B Trucks get better fuel economy. We measure fuel and miles driven for a month and calculate the MPG for each truck. We then run the appropriate analysis, which determines that there is a statistically significant trend that A Trucks are more fuel efficient than B Trucks. Upon further reflection, however, we also notice that A Trucks are more likely to be assigned highway routes, and B Trucks are more likely to be assigned city routes. This is a confounding variable. The confounding variable makes the results of the analysis unreliable. It is quite likely that we are just measuring the fact that highway driving results in better fuel economy than city driving.

In statistics terms, the make of the truck is the independent variable, the fuel economy (MPG) is the dependent variable and the amount of city driving is the confounding variable. To fix this study, we have several choices. One is to randomize the truck assignments so that A trucks and B Trucks end up with equal amounts of city and highway driving. That eliminates the confounding variable. Another choice is to quantify the amount of city driving and use that as a second independent variable. A third choice is to segment the study, first comparing MPG during city driving for all trucks, and then run a separate study comparing MPG during highway driving.

Definition

edit

Confounding is defined in terms of the data generating model. Let X be some independent variable, and Y some dependent variable. To estimate the effect of X on Y, the statistician must suppress the effects of extraneous variables that influence both X and Y. We say that X and Y are confounded by some other variable Z whenever Z causally influences both X and Y.

Let ? be the probability of event Y = y under the hypothetical intervention X = x. X and Y are not confounded if and only if the following holds:

for all values X = x and Y = y, where ? is the conditional probability upon seeing X = x. Intuitively, this equality states that X and Y are not confounded whenever the observationally witnessed association between them is the same as the association that would be measured in a controlled experiment, with x randomized.

In principle, the defining equality ? can be verified from the data generating model, assuming we have all the equations and probabilities associated with the model. This is done by simulating an intervention ? (see Bayesian network) and checking whether the resulting probability of Y equals the conditional probability ?. It turns out, however, that graph structure alone is sufficient for verifying the equality ?.

Control

edit

Consider a researcher attempting to assess the effectiveness of drug X, from population data in which drug usage was a patient's choice. The data shows that gender (Z) influences a patient's choice of drug as well as their chances of recovery (Y). In this scenario, gender Z confounds the relation between X and Y since Z is a cause of both X and Y:

?
Causal diagram of Gender as common cause of Drug use and Recovery

We have that

because the observational quantity contains information about the correlation between X and Z, and the interventional quantity does not (since X is not correlated with Z in a randomized experiment). It can be shown[5] that, in cases where only observational data is available, an unbiased estimate of the desired quantity ?, can be obtained by "adjusting" for all confounding factors, namely, conditioning on their various values and averaging the result. In the case of a single confounder Z, this leads to the "adjustment formula":

which gives an unbiased estimate for the causal effect of X on Y. The same adjustment formula works when there are multiple confounders except, in this case, the choice of a set Z of variables that would guarantee unbiased estimates must be done with caution. The criterion for a proper choice of variables is called the Back-Door[5][6] and requires that the chosen set Z "blocks" (or intercepts) every path between X and Y that contains an arrow into X. Such sets are called "Back-Door admissible" and may include variables which are not common causes of X and Y, but merely proxies thereof.

Returning to the drug use example, since Z complies with the Back-Door requirement (i.e., it intercepts the one Back-Door path ?), the Back-Door adjustment formula is valid:

In this way the physician can predict the likely effect of administering the drug from observational studies in which the conditional probabilities appearing on the right-hand side of the equation can be estimated by regression.

Contrary to common beliefs, adding covariates to the adjustment set Z can introduce bias.[7] A typical counterexample occurs when Z is a common effect of X and Y,[8] a case in which Z is not a confounder (i.e., the null set is Back-door admissible) and adjusting for Z would create bias known as "collider bias" or "Berkson's paradox." Controls that are not good confounders are sometimes called bad controls.

In general, confounding can be controlled by adjustment if and only if there is a set of observed covariates that satisfies the Back-Door condition. Moreover, if Z is such a set, then the adjustment formula of Eq. (3) is valid.[5][6] Pearl's do-calculus provides all possible conditions under which ? can be estimated, not necessarily by adjustment.[9]

History

edit

According to Morabia (2011),[10] the word confounding derives from the Medieval Latin verb "confundere", which meant "mixing", and was probably chosen to represent the confusion (from Latin: con=with + fusus=mix or fuse together) between the cause one wishes to assess and other causes that may affect the outcome and thus confuse, or stand in the way of the desired assessment. Greenland, Robins and Pearl[11] note an early use of the term "confounding" in causal inference by John Stuart Mill in 1843.

Fisher introduced the word "confounding" in his 1935 book "The Design of Experiments"[12] to refer specifically to a consequence of blocking (i.e., partitioning) the set of treatment combinations in a factorial experiment, whereby certain interactions may be "confounded with blocks". This popularized the notion of confounding in statistics, although Fisher was concerned with the control of heterogeneity in experimental units, not with causal inference.

According to Vandenbroucke (2004)[13] it was Kish[14] who used the word "confounding" in the sense of "incomparability" of two or more groups (e.g., exposed and unexposed) in an observational study. Formal conditions defining what makes certain groups "comparable" and others "incomparable" were later developed in epidemiology by Greenland and Robins (1986)[15] using the counterfactual language of Neyman (1935)[16] and Rubin (1974).[17] These were later supplemented by graphical criteria such as the Back-Door condition (Pearl 1993; Greenland, Robins and Pearl 1999).[11][5]

Graphical criteria were shown to be formally equivalent to the counterfactual definition[18] but more transparent to researchers relying on process models.

Types

edit

In the case of risk assessments evaluating the magnitude and nature of risk to human health, it is important to control for confounding to isolate the effect of a particular hazard such as a food additive, pesticide, or new drug. For prospective studies, it is difficult to recruit and screen for volunteers with the same background (age, diet, education, geography, etc.), and in historical studies, there can be similar variability. Due to the inability to control for variability of volunteers and human studies, confounding is a particular challenge. For these reasons, experiments offer a way to avoid most forms of confounding.

In some disciplines, confounding is categorized into different types. In epidemiology, one type is "confounding by indication",[19] which relates to confounding from observational studies. Because prognostic factors may influence treatment decisions (and bias estimates of treatment effects), controlling for known prognostic factors may reduce this problem, but it is always possible that a forgotten or unknown factor was not included or that factors interact complexly. Confounding by indication has been described as the most important limitation of observational studies. Randomized trials are not affected by confounding by indication due to random assignment.

Confounding variables may also be categorised according to their source. The choice of measurement instrument (operational confound), situational characteristics (procedural confound), or inter-individual differences (person confound).

  • An operational confounding can occur in both experimental and non-experimental research designs. This type of confounding occurs when a measure designed to assess a particular construct inadvertently measures something else as well.[20]
  • A procedural confounding can occur in a laboratory experiment or a quasi-experiment. This type of confound occurs when the researcher mistakenly allows another variable to change along with the manipulated independent variable.[20]
  • A person confounding occurs when two or more groups of units are analyzed together (e.g., workers from different occupations), despite varying according to one or more other (observed or unobserved) characteristics (e.g., gender).[21]

Examples

edit

Say one is studying the relation between birth order (1st child, 2nd child, etc.) and the presence of Down Syndrome in the child. In this scenario, maternal age would be a confounding variable:[citation needed]

  1. Higher maternal age is directly associated with Down Syndrome in the child
  2. Higher maternal age is directly associated with Down Syndrome, regardless of birth order (a mother having her 1st vs 3rd child at age 50 confers the same risk)
  3. Maternal age is directly associated with birth order (the 2nd child, except in the case of twins, is born when the mother is older than she was for the birth of the 1st child)
  4. Maternal age is not a consequence of birth order (having a 2nd child does not change the mother's age)

In risk assessments, factors such as age, gender, and educational levels often affect health status and so should be controlled. Beyond these factors, researchers may not consider or have access to data on other causal factors. An example is on the study of smoking tobacco on human health. Smoking, drinking alcohol, and diet are lifestyle activities that are related. A risk assessment that looks at the effects of smoking but does not control for alcohol consumption or diet may overestimate the risk of smoking.[22] Smoking and confounding are reviewed in occupational risk assessments such as the safety of coal mining.[23] When there is not a large sample population of non-smokers or non-drinkers in a particular occupation, the risk assessment may be biased towards finding a negative effect on health.[24]

Decreasing the potential for confounding

edit

A reduction in the potential for the occurrence and effect of confounding factors can be obtained by increasing the types and numbers of comparisons performed in an analysis. If measures or manipulations of core constructs are confounded (i.e. operational or procedural confounds exist), subgroup analysis may not reveal problems in the analysis. Additionally, increasing the number of comparisons can create other problems (see multiple comparisons).

Peer review is a process that can assist in reducing instances of confounding, either before study implementation or after analysis has occurred. Peer review relies on collective expertise within a discipline to identify potential weaknesses in study design and analysis, including ways in which results may depend on confounding. Similarly, replication can test for the robustness of findings from one study under alternative study conditions or alternative analyses (e.g., controlling for potential confounds not identified in the initial study).

Confounding effects may be less likely to occur and act similarly at multiple times and locations.[citation needed] In selecting study sites, the environment can be characterized in detail at the study sites to ensure sites are ecologically similar and therefore less likely to have confounding variables. Lastly, the relationship between the environmental variables that possibly confound the analysis and the measured parameters can be studied. The information pertaining to environmental variables can then be used in site-specific models to identify residual variance that may be due to real effects.[25]

Depending on the type of study design in place, there are various ways to modify that design to actively exclude or control confounding variables:[26]

  • Case-control studies assign confounders to both groups, cases and controls, equally. For example, if somebody wanted to study the cause of myocardial infarct and thinks that the age is a probable confounding variable, each 67-year-old infarct patient will be matched with a healthy 67-year-old "control" person. In case-control studies, matched variables most often are the age and sex. Drawback: Case-control studies are feasible only when it is easy to find controls, i.e. persons whose status vis-à-vis all known potential confounding factors is the same as that of the case's patient: Suppose a case-control study attempts to find the cause of a given disease in a person who is 1) 45 years old, 2) African-American, 3) from Alaska, 4) an avid football player, 5) vegetarian, and 6) working in education. A theoretically perfect control would be a person who, in addition to not having the disease being investigated, matches all these characteristics and has no diseases that the patient does not also have—but finding such a control would be an enormous task.
  • Cohort studies: A degree of matching is also possible and it is often done by only admitting certain age groups or a certain sex into the study population, creating a cohort of people who share similar characteristics and thus all cohorts are comparable in regard to the possible confounding variable. For example, if age and sex are thought to be confounders, only 40 to 50 years old males would be involved in a cohort study that would assess the myocardial infarct risk in cohorts that either are physically active or inactive. Drawback: In cohort studies, the overexclusion of input data may lead researchers to define too narrowly the set of similarly situated persons for whom they claim the study to be useful, such that other persons to whom the causal relationship does in fact apply may lose the opportunity to benefit from the study's recommendations. Similarly, "over-stratification" of input data within a study may reduce the sample size in a given stratum to the point where generalizations drawn by observing the members of that stratum alone are not statistically significant.
  • Double blinding: conceals from the trial population and the observers the experiment group membership of the participants. By preventing the participants from knowing if they are receiving treatment or not, the placebo effect should be the same for the control and treatment groups. By preventing the observers from knowing of their membership, there should be no bias from researchers treating the groups differently or from interpreting the outcomes differently.
  • Randomized controlled trial: A method where the study population is divided randomly in order to mitigate the chances of self-selection by participants or bias by the study designers. Before the experiment begins, the testers will assign the members of the participant pool to their groups (control, intervention, parallel), using a randomization process such as the use of a random number generator. For example, in a study on the effects of exercise, the conclusions would be less valid if participants were given a choice if they wanted to belong to the control group which would not exercise or the intervention group which would be willing to take part in an exercise program. The study would then capture other variables besides exercise, such as pre-experiment health levels and motivation to adopt healthy activities. From the observer's side, the experimenter may choose candidates who are more likely to show the results the study wants to see or may interpret subjective results (more energetic, positive attitude) in a way favorable to their desires.
  • Stratification: As in the example above, physical activity is thought to be a behaviour that protects from myocardial infarct; and age is assumed to be a possible confounder. The data sampled is then stratified by age group – this means that the association between activity and infarct would be analyzed per each age group. If the different age groups (or age strata) yield much different risk ratios, age must be viewed as a confounding variable. There exist statistical tools, among them Mantel–Haenszel methods, that account for stratification of data sets.
  • Controlling for confounding by measuring the known confounders and including them as covariates is multivariable analysis such as regression analysis. Multivariate analyses reveal much less information about the strength or polarity of the confounding variable than do stratification methods. For example, if multivariate analysis controls for antidepressant, and it does not stratify antidepressants for TCA and SSRI, then it will ignore that these two classes of antidepressant have opposite effects on myocardial infarction, and one is much stronger than the other.

All these methods have their drawbacks:

  1. The best available defense against the possibility of spurious results due to confounding is often to dispense with efforts at stratification and instead conduct a randomized study of a sufficiently large sample taken as a whole, such that all potential confounding variables (known and unknown) will be distributed by chance across all study groups and hence will be uncorrelated with the binary variable for inclusion/exclusion in any group.
  2. Ethical considerations: In double-blind and randomized controlled trials, participants are not aware that they are recipients of sham treatments and may be denied effective treatments.[27] There is a possibility that patients only agree to invasive surgery (which carry real medical risks) under the understanding that they are receiving treatment. Although this is an ethical concern, it is not a complete account of the situation. For surgeries that are currently being performed regularly, but for which there is no concrete evidence of a genuine effect, there may be ethical issues to continue such surgeries. In such circumstances, many of people are exposed to the real risks of surgery yet these treatments may possibly offer no discernible benefit. Sham-surgery control is a method that may allow medical science to determine whether a surgical procedure is efficacious or not. Given that there are known risks associated with medical operations, it is questionably ethical to allow unverified surgeries to be conducted ad infinitum into the future.

Artifacts

edit

Artifacts are variables that should have been systematically varied, either within or across studies, but that were accidentally held constant. Artifacts are thus threats to external validity. Artifacts are factors that covary with the treatment and the outcome. Campbell and Stanley[28] identify several artifacts. The major threats to internal validity are history, maturation, testing, instrumentation, statistical regression, selection, experimental mortality, and selection-history interactions.

One way to minimize the influence of artifacts is to use a pretest-posttest control group design. Within this design, "groups of people who are initially equivalent (at the pretest phase) are randomly assigned to receive the experimental treatment or a control condition and then assessed again after this differential experience (posttest phase)".[29] Thus, any effects of artifacts are (ideally) equally distributed in participants in both the treatment and control conditions.

See also

edit

Notes

edit
  1. ^ Also known as a confounding variable, confounding factor, extraneous determinant, or lurking variable.

References

edit
  1. ^ Pearl, J., (2009). Simpson's Paradox, Confounding, and Collapsibility In Causality: Models, Reasoning and Inference (2nd ed.). New York?: Cambridge University Press.
  2. ^ VanderWeele, T.J.; Shpitser, I. (2013). "On the definition of a confounder". Annals of Statistics. 41 (1): 196–220. arXiv:1304.0564. doi:10.1214/12-aos1058. PMC?4276366. PMID?25544784.
  3. ^ Greenland, S.; Robins, J. M.; Pearl, J. (1999). "Confounding and Collapsibility in Causal Inference". Statistical Science. 14 (1): 29–46. doi:10.1214/ss/1009211805.
  4. ^ Shadish, W. R.; Cook, T. D.; Campbell, D. T. (2002). Experimental and quasi-experimental designs for generalized causal inference. Boston, MA: Houghton-Mifflin.
  5. ^ a b c d Pearl, J., (1993). "Aspects of Graphical Models Connected With Causality", In Proceedings of the 49th Session of the International Statistical Science Institute, pp. 391–401.
  6. ^ a b Pearl, J. (2009). Causal Diagrams and the Identification of Causal Effects In Causality: Models, Reasoning and Inference (2nd ed.). New York, NY, US: Cambridge University Press.
  7. ^ Cinelli, C.; Forney, A.; Pearl, J. (March 2022). "A Crash Course in Good and Bad Controls" (PDF). UCLA Cognitive Systems Laboratory, Technical Report (R-493).
  8. ^ Lee, P. H. (2014). "Should We Adjust for a Confounder if Empirical and Theoretical Criteria Yield Contradictory Results? A Simulation Study". Sci Rep. 4: 6085. Bibcode:2014NatSR...4.6085L. doi:10.1038/srep06085. PMC?5381407. PMID?25124526.
  9. ^ Shpitser, I.; Pearl, J. (2008). "Complete identification methods for the causal hierarchy". The Journal of Machine Learning Research. 9: 1941–1979.
  10. ^ Morabia, A (2011). "History of the modern epidemiological concept of confounding" (PDF). Journal of Epidemiology and Community Health. 65 (4): 297–300. doi:10.1136/jech.2010.112565. PMID?20696848. S2CID?9068532.
  11. ^ a b Greenland, S.; Robins, J. M.; Pearl, J. (1999). "Confounding and Collapsibility in Causal Inference". Statistical Science. 14 (1): 31. doi:10.1214/ss/1009211805.
  12. ^ Fisher, R. A. (1935). The design of experiments (pp. 114–145).
  13. ^ Vandenbroucke, J. P. (2004). "The history of confounding". Soz Praventivmed. 47 (4): 216–224. doi:10.1007/BF01326402. PMID?12415925. S2CID?198174446.
  14. ^ Kish, L (1959). "Some statistical problems in research design". Am Sociol. 26 (3): 328–338. doi:10.2307/2089381. JSTOR?2089381.
  15. ^ Greenland, S.; Robins, J. M. (1986). "Identifiability, exchangeability, and epidemiological confounding". International Journal of Epidemiology. 15 (3): 413–419. CiteSeerX?10.1.1.157.6445. doi:10.1093/ije/15.3.413. PMID?3771081.
  16. ^ Neyman, J., with cooperation of K. Iwaskiewics and St. Kolodziejczyk (1935). Statistical problems in agricultural experimentation (with discussion). Suppl J Roy Statist Soc Ser B 2 107-180.
  17. ^ Rubin, D. B. (1974). "Estimating causal effects of treatments in randomized and nonrandomized studies". Journal of Educational Psychology. 66 (5): 688–701. doi:10.1037/h0037350. S2CID?52832751.
  18. ^ Pearl, J., (2009). Causality: Models, Reasoning and Inference (2nd ed.). New York, NY, US: Cambridge University Press.
  19. ^ Johnston, S. C. (2001). "Identifying Confounding by Indication through Blinded Prospective Review". American Journal of Epidemiology. 154 (3): 276–284. doi:10.1093/aje/154.3.276. PMID?11479193.
  20. ^ a b Pelham, Brett (2006). Conducting Research in Psychology. Belmont: Wadsworth. ISBN?978-0-534-53294-9.
  21. ^ Steg, L.; Buunk, A. P.; Rothengatter, T. (2008). "Chapter 4". Applied Social Psychology: Understanding and managing social problems. Cambridge, UK: Cambridge University Press.
  22. ^ Tj?nneland, Anne; Gr?nb?k, Morten; Stripp, Connie; Overvad, Kim (January 1999). "Wine intake and diet in a random sample of 48763 Danish men and women". The American Journal of Clinical Nutrition. 69 (1): 49–54. doi:10.1093/ajcn/69.1.49. PMID?9925122.
  23. ^ Axelson, O. (1989). "Confounding from smoking in occupational epidemiology". British Journal of Industrial Medicine. 46 (8): 505–07. doi:10.1136/oem.46.8.505. PMC?1009818. PMID?2673334.
  24. ^ James, Gareth; Witten, Daniela; Hastie, Trevor; Tibshirani, Robert (2021). An introduction to statistical learning: with applications in R (Second?ed.). New York, NY: Springer. p.?150. doi:10.1007/978-1-0716-1418-1. ISBN?978-1-0716-1418-1. Retrieved 9 November 2024.
  25. ^ Calow, Peter P. (2009) Handbook of Environmental Risk Assessment and Management, Wiley
  26. ^ Mayrent, Sherry L (1987). Epidemiology in Medicine. Lippincott Williams & Wilkins. ISBN?978-0-316-35636-7.
  27. ^ Emanuel, Ezekiel J; Miller, Franklin G (Sep 20, 2001). "The Ethics of Placebo-Controlled Trials—A Middle Ground". New England Journal of Medicine. 345 (12): 915–9. doi:10.1056/nejm200109203451211. PMID?11565527.
  28. ^ Campbell, D. T.; Stanley, J. C. (1966). Experimental and quasi-experimental designs for research. Chicago: Rand McNally.
  29. ^ Crano, W. D.; Brewer, M. B. (2002). Principles and methods of social research (2nd?ed.). Mahwah, NJ: Lawrence Erlbaum Associates. p.?28.

Further reading

edit
edit
吃菌子不能吃什么 纷纷扬扬是什么意思 猫可以吃什么水果 韩国古代叫什么 三唑磷主要打什么虫
ad是什么 梦到洗衣服是什么意思 梅核气是什么症状 女性乳房痒是什么原因 做肠镜检查什么
容易感冒是什么原因 虐狗什么意思 ks是什么意思 风水轮流转什么意思 嘴唇上有痣代表什么
牙胶是什么 寄生是什么意思 梦见月经血是什么预兆 挂了是什么意思 均一性红细胞什么意思
去医院查怀孕挂什么科hcv8jop7ns3r.cn 什么玻璃hcv9jop4ns0r.cn 酸梅汤不适合什么人喝hcv7jop6ns8r.cn 眩晕症挂什么科hcv8jop9ns7r.cn 法国铁塔叫什么名字hcv9jop8ns0r.cn
三净肉是什么hcv9jop6ns8r.cn 树蛙吃什么hlguo.com 秋葵吃了有什么好处hcv8jop8ns4r.cn 畏手畏脚是什么意思hcv9jop8ns3r.cn 蜜蜂蜇人后为什么会死去mmeoe.com
开是什么意思hcv7jop7ns3r.cn 军校出来是什么军衔hcv8jop5ns9r.cn 鸡皮肤用什么药膏最好hcv8jop7ns8r.cn 柔和是什么意思hcv8jop2ns5r.cn 卖淫是什么意思hcv7jop6ns6r.cn
什么样的花纹hcv9jop3ns7r.cn 观音坐莲是什么姿势kuyehao.com 侄女叫我什么hcv8jop9ns9r.cn 小便有血是什么原因hcv8jop4ns0r.cn 身体发热是什么原因hcv9jop2ns6r.cn
百度