头痒用什么东西洗头最好| 晋升是什么意思| 眼袋大是什么原因引起的| 2013年是什么命| 吃什么补蛋白质最快| 植物的根有什么作用| 王林为什么叫王麻子| 雷诺综合征是什么病| 布施什么意思| 泉肌症是什么病| 宝诰是什么意思| 雷蒙欣氨麻美敏片是什么药| 梦见和婆婆吵架是什么意思| 凌晨两点是什么时辰| 舒筋健腰丸为什么这么贵| gdp是什么意思| 蹄花是什么| 24是什么生肖| 夏天吹什么风| 补钙吃什么好| 牙上有黑渍是什么原因| zero是什么牌子| 缓解是什么意思| 伟哥是什么| 捐肾对身体有什么影响| 虫草有什么作用与功效| 交会是什么意思| 片仔癀是什么| 3月21日什么星座| 软化血管吃什么药最好| 法本是什么意思| 吃什么助睡眠| 测心率手表什么牌子好| 尐是什么意思| 一闪一闪的星星像什么| 非经期出血是什么原因| 胃结石有什么症状表现| 吃头发的虫子叫什么| 太燃了是什么意思| 男朋友有什么用| 5.3什么星座| 女人依赖男人说明什么| 喝茶失眠是什么原因| 诺贝尔为什么没有数学奖| 淀粉酶是什么| 牙神经挑了为什么还疼| 人在什么情况下会发烧| 身份证x代表什么| 腱鞘炎有什么症状| 磷酸是什么| 智齿旁边的牙齿叫什么| 眉骨疼是什么原因| 颈动脉斑块吃什么药效果最好| 长胸毛的男人代表什么| 洒水车的音乐是什么歌| 里急后重什么意思| 西五行属什么| 南浦大桥什么时候建成| 尿胆原阳性是什么病| 背后长痘痘是什么原因| 乌龟用什么呼吸| 奎字五行属什么| 中核集团是什么级别| 抗糖是什么意思| 可喜可贺是什么意思| 大便臭是什么原因| 史努比是什么意思| 缺锌吃什么| 吃饭吧唧嘴有什么说法| 看食道挂什么科室| 亮剑是什么意思| cro是什么意思| 腱鞘囊肿是什么原因| 什么叫肠上皮化生| 回眸一笑百媚生什么意思| 草莓像什么| 如鱼得水是什么意思| 芊芊学子什么意思| 无什么于事| 梦见打死黄鼠狼是什么意思| 蛇缠腰是什么病怎么治| 1996年是什么命| 怀孕10多天有什么症状| 叶酸片是治什么的| 爱因斯坦是什么星座| 宫腔镜是什么手术| 麦穗鱼吃什么| 副研究员什么级别| 高尿酸血症是什么意思| 吕布属什么生肖| 煤气罐为什么会爆炸| 大疱性皮肤病是什么病| 2倍是什么意思| 白蛋白偏低是什么原因| 羡慕不来是什么意思| 什么是妈妈臀| 小孩感冒吃什么饭菜比较好| molly是什么意思| 盆腔积液是什么意思| 血糖高喝什么稀饭好| 煮牛骨头放什么调料| 乔其纱是什么面料| 身体不适是什么意思| 水鱼煲鸡汤放什么药材| 阴道是什么样的| 肠梗阻是因为什么原因引起的| 相思病是什么意思| 岁岁年年是什么意思| 单核细胞高是什么原因| 小肚子是什么部位| 3月13日是什么星座| 妈祖是什么意思| 脚底红润是什么原因| 好老公的标准是什么| 中央候补委员是什么级别| 缘字五行属什么| 蹲不下去是什么原因| 喝酒后头晕是什么原因| 终止是什么意思| 卵巢多囊是什么原因造成的| 什么是事故隐患| 灵敏度是什么意思| 刘封为什么不救关羽| 抗环瓜氨酸肽抗体高是什么意思| 五郎属什么生肖| 宝宝嘴巴臭臭的是什么原因| lsa是什么意思| 氯化钠是什么| 自汗是什么意思| 犬字旁的字和什么有关| 腰无力是什么原因| 耸肩是什么原因造成的| 颐养天年是什么意思| 血常规24项能查出什么病| 什么睡姿可以矫正驼背| 算了吧什么意思| 肚脐眼周围痛什么原因| 龙阳之好是什么意思| 吃什么降尿酸最有效| 梭是什么意思| 维生素a中毒是什么症状| 动态心电图能检查出什么病| 身体素质是什么意思| 血糖高吃什么能降糖| 女人手心热吃什么药好| 喊麦什么意思| 什么是靶向治疗| 过奖是什么意思| 皮下出血点是什么原因| 共济失调是什么病| 什么是阴虚| 王八和乌龟有什么区别| 跑步什么时候跑最好| 成人感冒挂什么科| 脸部神经跳动吃什么药| 纨绔子弟什么意思| 什么止疼药见效最快| 心包隐窝是什么意思| 太阳花是什么花| 舌苔白什么原因| 老花眼有什么办法可以恢复| 聚字五行属什么| 各类病原体dna测定是检查什么| 肿瘤出血意味着什么| 狮子座和什么座最配| 女性尿检能查出什么病| 取笑是什么意思| 什么肉是发物| 青岛市市长什么级别| 一个火一个羽一个白念什么| 阴虱长什么样子图片| 脾大有什么危害| 孕妇快生的时候有什么征兆| 孩子疱疹性咽峡炎吃什么药| 什么的夏天| 结膜出血是什么原因| 玉米须煮水喝有什么好处| 早泄吃什么好| 驿是什么意思| cas是什么意思| 常吃南瓜子有什么好处和坏处| 6.26什么星座| 蜂蜜可以做什么美食| 什么球会自己长大| 大荔冬枣什么时候成熟| 突然便秘是什么原因引起的| 云南白药植物长什么样| 吃什么能提高性功能| 高脂血症是什么意思| 隔应是什么意思| 脾大吃什么药能缩小| 小猫咪吃什么| 牙齿酸胀是什么原因| ppi是什么| 李子什么时候成熟| 女性肛裂要抹什么药好| 寄托是什么意思| 上天眷顾是什么意思| 萌是什么意思| 为什么养猫就没有蟑螂| 女生被插是什么感觉| 上天是什么意思| 夜黑风高什么意思| 人为什么会晕车| snr是什么意思| 夸奖的近义词是什么| 7号来的月经什么时候是排卵期| 纵横四海是什么意思| 立秋是什么时候| 玉米热量高为什么还减肥| 什么是人| 什么是abs| 梦见死人了是什么意思| 刚做了人流适合吃什么好| 饱不洗头饿不洗澡是为什么| 什么原因会导致尿路感染| 墨迹什么意思| 04年出生属什么| 烧仙草是什么做的| 鸟衣念什么| 有个马的标志是什么车| 尿道炎和阴道炎有什么区别| 壬申日是什么意思| 为什么会流鼻血| 567是什么意思| 玉溪烟属于什么档次| 人工周期是什么意思| 离歌是什么意思| 术后吃什么消炎药| gg 是什么意思| 葛根主治什么病| 过敏性皮炎吃什么药好| 娃娃流鼻血是什么原因| 什么药治便秘最好最快| 什么时间吃苹果最好| eo是什么意思| 送人礼物送什么好| 酸辣土豆丝用什么醋| 准生证是什么样子图片| cd是什么元素| 美国为什么打伊朗| 怀孕吃叶酸片有什么用| 胖脸女人适合什么发型| 屁多不臭是什么原因| 噤若寒蝉是什么意思| 现在是什么星座| 保拉纳啤酒什么档次| 洗衣粉和洗衣液有什么区别| 货号是什么| 检查阳性是什么意思| 周知是什么意思| 雅戈尔男装什么档次| 竹肠是什么部位| 脑萎缩是什么症状| 脸部填充用什么填充最好| 最高法院院长什么级别| 每个月月经都提前是什么原因| 伤骨头了吃什么好得快| 防晒隔离什么牌子好| 延时吃什么药| 阿胶补血口服液适合什么人喝| 西安吃什么| 蛇属什么五行| 绊倒是什么意思| 百度

踏春客请注意,为您推荐湖南最佳赏花胜地

(Redirected from Standard error (statistics))
百度 每位中央政治局同志都必须不忘初心、牢记使命,胸怀大局、执政为民,勇于开拓、敢于担当,克己奉公、廉洁自律,发挥示范带头作用,以实际行动团结带领各级干部和广大人民群众,万众一心为实现“两个一百年”奋斗目标而努力奋斗。

The standard error (SE)[1] of a statistic (usually an estimator of a parameter, like the average or mean) is the standard deviation of its sampling distribution[2] or an estimate of that standard deviation. In other words, it is the standard deviation of statistic values (each value is per sample that is a set of observations made per sampling on the same population). If the statistic is the sample mean, it is called the standard error of the mean (SEM).[1] The standard error is a key ingredient in producing confidence intervals.[3]

For a value that is sampled with an unbiased normally distributed error, the above depicts the proportion of samples that would fall between 0, 1, 2, and 3 standard deviations above and below the actual value.

The sampling distribution of a mean is generated by repeated sampling from the same population and recording the sample mean per sample. This forms a distribution of different means, and this distribution has its own mean and variance. Mathematically, the variance of the sampling mean distribution obtained is equal to the variance of the population divided by the sample size. This is because as the sample size increases, sample means cluster more closely around the population mean.

Therefore, the relationship between the standard error of the mean and the standard deviation is such that, for a given sample size, the standard error of the mean equals the standard deviation divided by the square root of the sample size.[1] In other words, the standard error of the mean is a measure of the dispersion of sample means around the population mean.

In regression analysis, the term "standard error" refers either to the square root of the reduced chi-squared statistic or the standard error for a particular regression coefficient (as used in, say, confidence intervals).

Standard error of the sample mean

edit

Exact value

edit

Suppose a statistically independent sample of ? observations ? is taken from a statistical population with a standard deviation of ? (the standard deviation of the population). The mean value calculated from the sample, ?, will have an associated standard error on the mean, ?, given by:[1]

?

Practically this tells us that when trying to estimate the value of a population mean, due to the factor ?, reducing the error on the estimate by a factor of two requires acquiring four times as many observations in the sample; reducing it by a factor of ten requires a hundred times as many observations.

Estimate

edit

The standard deviation ? of the population being sampled is seldom known. Therefore, the standard error of the mean is usually estimated by replacing ? with the sample standard deviation ? instead: ?

As this is only an estimator for the true "standard error", it is common to see other notations here such as: ?

A common source of confusion occurs when failing to distinguish clearly between:

  • the standard deviation of the population (?),
  • the standard deviation of the sample (?),
  • the standard deviation of the sample mean itself (?, which is the standard error), and
  • the estimator of the standard deviation of the sample mean (?, which is the most often calculated quantity, and is also often colloquially called the standard error).

Accuracy of the estimator

edit

When the sample size is small, using the standard deviation of the sample instead of the true standard deviation of the population will tend to systematically underestimate the population standard deviation, and therefore also the standard error. With n = 2, the underestimate is about 25%, but for n = 6, the underestimate is only 5%. Gurland and Tripathi (1971) provide a correction and equation for this effect.[4] Sokal and Rohlf (1981) give an equation of the correction factor for small samples of n < 20.[5] See unbiased estimation of standard deviation for further discussion.

Derivation

edit

The standard error on the mean may be derived from the variance of a sum of independent random variables,[6] given the definition of variance and some properties thereof. If ? is a sample of ? independent observations from a population with mean ? and standard deviation ?, then we can define the total ? which due to the Bienaymé formula, will have variance

?

The mean of these measurements ? (sample mean) is given by ? The variance of the mean is then

?

where a propagation in variance is used in the 2nd equality. The standard error is, by definition, the standard deviation of ? which is the square root of the variance:

?

In other words, if there are a large number of observations per sampling (? is high compared with the population variance ?), then the calculated mean per sample ? is expected to be close to the population mean ?.

For correlated random variables, the sample variance needs to be computed according to the Markov chain central limit theorem.

Independent and identically distributed random variables with random sample size

edit

There are cases when a sample is taken without knowing, in advance, how many observations will be acceptable according to some criterion. In such cases, the sample size ? is a random variable whose variation adds to the variation of ? such that,?[7] which follows from the law of total variance.

If ? has a Poisson distribution, then ? with estimator ?. Hence the estimator of ? becomes ?, leading the following formula for standard error: ? (since the standard deviation is the square root of the variance).

Student approximation when σ value is unknown

edit

In many practical applications, the true value of σ is unknown. As a result, we need to use a distribution that takes into account that spread of possible σ's. When the true underlying distribution is known to be Gaussian, although with unknown σ, then the resulting estimated distribution follows the Student t-distribution. The standard error is the standard deviation of the Student t-distribution. T-distributions are slightly different from Gaussian, and vary depending on the size of the sample. Small samples are somewhat more likely to underestimate the population standard deviation and have a mean that differs from the true population mean, and the Student t-distribution accounts for the probability of these events with somewhat heavier tails compared to a Gaussian. To estimate the standard error of a Student t-distribution it is sufficient to use the sample standard deviation "s" instead of σ, and we could use this value to calculate confidence intervals.

Note: The Student's probability distribution is approximated well by the Gaussian distribution when the sample size is over 100. For such samples one can use the latter distribution, which is much simpler. Also, even though the 'true' distribution of the population is unknown, assuming normality of the sampling distribution makes sense for a reasonable sample size, and under certain sampling conditions, see CLT. If these conditions are not met, then using a Bootstrap distribution to estimate the Standard Error is often a good workaround, but it can be computationally intensive.

Assumptions and usage

edit

An example of how ? (Standard Error) is used to make confidence intervals of the unknown population mean is shown. If the sampling distribution is normally distributed, the sample mean, the standard error, and the quantiles of the normal distribution can be used to calculate confidence intervals for the true population mean. The following expressions can be used to calculate the upper and lower 95% confidence limits, where ? is for the sample mean, ? is for the standard error for the sample mean (the standard deviation of sample mean values), and 1.96 is the approximate value of the 97.5 percentile point of the normal distribution:

  • Upper 95% limit = ?, and
  • Lower 95% limit = ?.

In particular, the standard error of a sample statistic (such as sample mean) is the actual or estimated standard deviation of the sample mean in the process by which it was generated. In other words, it is the actual or estimated standard deviation of the sampling distribution of the sample statistic. The notation for standard error can be any one of SE, SEM (for standard error of measurement or mean), or SE.

Standard errors provide simple measures of uncertainty in a value and are often used because:

Standard error of mean versus standard deviation

edit

In scientific and technical literature, experimental data are often summarized either using the mean and standard deviation of the sample data or the mean with the standard error. This often leads to confusion about their interchangeability. However, the mean and standard deviation are descriptive statistics, whereas the standard error of the mean is descriptive of the random sampling process. The standard deviation of the sample data is a description of the variation in measurements, while the standard error of the mean is a probabilistic statement about how the sample size will provide a better bound on estimates of the population mean, in light of the central limit theorem.[8]

Put simply, the standard error of the sample mean is an estimate of how far the sample mean is likely to be from the population mean, whereas the standard deviation of the sample is the degree to which individuals within the sample differ from the sample mean.[9] If the population standard deviation is finite, the standard error of the mean of the sample will tend to zero with increasing sample size, because the estimate of the population mean will improve, while the standard deviation of the sample will tend to approximate the population standard deviation as the sample size increases.

Extensions

edit

Finite population correction (FPC)

edit

The formula given above for the standard error assumes that the population is infinite. Nonetheless, it is often used for finite populations when people are interested in measuring the process that created the existing finite population (this is called an analytic study). Though the above formula is not exactly correct when the population is finite, the difference between the finite- and infinite-population versions will be small when sampling fraction is small (e.g. a small proportion of a finite population is studied). In this case people often do not correct for the finite population, essentially treating it as an "approximately infinite" population.

If one is interested in measuring an existing finite population that will not change over time, then it is necessary to adjust for the population size (called an enumerative study). When the sampling fraction (often termed f) is large (approximately at 5% or more) in an enumerative study, the estimate of the standard error must be corrected by multiplying by a ''finite population correction'' (a.k.a.: FPC):[10] [11] ? which, for large N: ? to account for the added precision gained by sampling close to a larger percentage of the population. The effect of the FPC is that the error becomes zero when the sample size n is equal to the population size N.

This happens in survey methodology when sampling without replacement. If sampling with replacement, then FPC does not come into play.

Correction for correlation in the sample

edit
?
Expected error in the mean of A for a sample of n data points with sample bias coefficient?ρ. The unbiased standard error plots as the ρ?=?0 diagonal line with log-log slope??1?2.

If values of the measured quantity A are not statistically independent but have been obtained from known locations in parameter space?x, an unbiased estimate of the true standard error of the mean (actually a correction on the standard deviation part) may be obtained by multiplying the calculated standard error of the sample by the factor?f: ? where the sample bias coefficient ρ is the widely used Prais–Winsten estimate of the autocorrelation-coefficient (a quantity between ?1 and +1) for all sample point pairs. This approximate formula is for moderate to large sample sizes; the reference gives the exact formulas for any sample size, and can be applied to heavily autocorrelated time series like Wall Street stock quotes. Moreover, this formula works for positive and negative ρ alike.[12] See also unbiased estimation of standard deviation for more discussion.

See also

edit

References

edit
  1. ^ a b c d Altman, Douglas G; Bland, J Martin (2025-08-14). "Standard deviations and standard errors". BMJ: British Medical Journal. 331 (7521): 903. doi:10.1136/bmj.331.7521.903. ISSN?0959-8138. PMC?1255808. PMID?16223828.
  2. ^ Everitt, B. S. (2003). The Cambridge Dictionary of Statistics. Cambridge University Press. ISBN?978-0-521-81099-9.
  3. ^ Wooldridge, Jeffrey M. (2023). "What is a standard error? (And how should we compute it?)". Journal of Econometrics. 237 (2, Part A). doi:10.1016/j.jeconom.2023.105517. ISSN?0304-4076.
  4. ^ Gurland, J; Tripathi RC (1971). "A simple approximation for unbiased estimation of the standard deviation". American Statistician. 25 (4): 30–32. doi:10.2307/2682923. JSTOR?2682923.
  5. ^ Sokal; Rohlf (1981). Biometry: Principles and Practice of Statistics in Biological Research (2nd?ed.). W. H. Freeman. p.?53. ISBN?978-0-7167-1254-1.
  6. ^ Hutchinson, T. P. (1993). Essentials of Statistical Methods, in 41 pages. Adelaide: Rumsby. ISBN?978-0-646-12621-0.
  7. ^ Cornell, J R; Benjamin, C A (1970). Probability, Statistics, and Decisions for Civil Engineers. NY: McGraw-Hill. pp.?178–179. ISBN?0486796094.
  8. ^ Barde, M. (2012). "What to use to express the variability of data: Standard deviation or standard error of mean?". Perspect. Clin. Res. 3 (3): 113–116. doi:10.4103/2229-3485.100662. PMC?3487226. PMID?23125963.
  9. ^ Wassertheil-Smoller, Sylvia (1995). Biostatistics and Epidemiology?: A Primer for Health Professionals (Second?ed.). New York: Springer. pp.?40–43. ISBN?0-387-94388-9.
  10. ^ Isserlis, L. (1918). "On the value of a mean as calculated from a sample". Journal of the Royal Statistical Society. 81 (1): 75–81. doi:10.2307/2340569. JSTOR?2340569. (Equation 1)
  11. ^ Bondy, Warren; Zlot, William (1976). "The Standard Error of the Mean and the Difference Between Means for Finite Populations". The American Statistician. 30 (2): 96–97. doi:10.1080/00031305.1976.10479149. JSTOR?2683803. (Equation 2)
  12. ^ Bence, James R. (1995). "Analysis of Short Time Series: Correcting for Autocorrelation". Ecology. 76 (2): 628–639. Bibcode:1995Ecol...76..628B. doi:10.2307/1941218. JSTOR?1941218.
北京为什么叫四九城 血糖高的人适合吃什么水果 o型血是什么血 来字五行属什么 头疼耳鸣是什么原因引起的
腮腺炎是什么 为什么磨牙 吃什么囊肿会消失 什么是阴历什么是阳历 沸石为什么能防止暴沸
不解什么什么 血压高不能吃什么食物 腰椎生理曲度变直什么意思 雷震子是什么神位 什么植物最好养
痛风挂什么科就医 莲花代表什么生肖 金银花洗澡对婴儿有什么好处 喝酒喝多了有什么危害 8月1日是什么星座
什么地游泳hcv8jop7ns4r.cn 岩茶是什么茶类hcv9jop5ns3r.cn 舌系带短挂什么科hcv8jop6ns5r.cn 痤疮长什么样hcv8jop2ns1r.cn 铅是什么东西wuhaiwuya.com
凌霄花什么时候开花hcv8jop0ns2r.cn 油光满面是什么意思hcv8jop8ns3r.cn 真丝香云纱是什么面料hcv8jop5ns6r.cn 眼晴干涩模糊用什么药jasonfriends.com 高危性行为是什么hcv9jop4ns2r.cn
开拔是什么意思hcv9jop0ns7r.cn 血脂高吃什么水果最好ff14chat.com 反胃是什么原因引起的hcv8jop7ns6r.cn 辣子鸡属于什么菜系hcv7jop6ns0r.cn 汉堡里面的白色酱是什么酱hcv9jop0ns8r.cn
男人耳朵大代表什么sanhestory.com 爽肤水是什么qingzhougame.com 睡觉流鼻血是什么原因naasee.com 异常的异是什么意思jasonfriends.com 经期喝咖啡有什么影响hcv7jop5ns0r.cn
百度