怀孕吃什么会流产| 玉屏风颗粒主治什么| 治妇科炎症用什么药好| 尿蛋白阳性是什么意思| 微商是什么| 一唱一和是什么生肖| 独角仙生活在什么地方| 女性分泌物像豆腐渣用什么药| 冥王星是什么星| 全麻是什么感觉| 印堂在什么位置| 外阴白斑是什么| 交是什么结构的字| 中医湿气重是什么意思| 74岁属什么生肖| 什么牛什么毛| 晚上吃什么水果对身体好| 1984年属什么| 骨折吃什么水果好| 额额是什么意思| 皮下水肿是什么原因| ol是什么| 颈静脉怒张见于什么病| 为什么会长腋毛| 丝瓜不能和什么食物一起吃| 得了便宜还卖乖是什么意思| 小孩子打呼噜是什么原因| 腰疼贴什么膏药| 深圳有什么好玩的地方| 知了猴是什么东西| 做nt挂什么科| 迪拜货币叫什么| 胆小如鼠的意思是什么| 正视是什么意思| 剂量是什么意思| 车前草有什么功效和作用| 什么是信仰| 左眼皮跳什么意思| 夫妻少配无刑是什么意思| 中国国花是什么花| 什么的摇篮| 萎缩性胃炎吃什么药效果好| 女性尿频尿急吃什么药| 男人为什么喜欢女人| 海参什么时间吃最好| 属兔适合佩戴什么饰品| 农历八月十五是什么节日| 尿潜血弱阳性是什么意思| 玉树临风是什么生肖| 乙酰氨基酚片是什么药| 什么运动瘦肚子| 肝胆不好有什么症状有哪些表现| 为什么会有黑眼圈| 补肾吃什么中药| 四个火念什么字| 为非作歹是什么意思| 八一是什么节| 什么叫书签| 毒龙是什么| 属虎的守护神是什么菩萨| 身上长小红痣是什么原因| 牛魔王是什么生肖| 芳华是什么意思| 三观是什么意思| modern是什么牌子| 珙桐是什么植物| 嘴唇肿起来一般是什么原因引起的| 螃蟹喜欢吃什么食物| 白细胞计数偏低是什么原因| 血红蛋白升高说明什么| 高圆圆老公叫什么名字| 五月二十六是什么星座| 陈可以组什么词| 碧文圆顶是什么意思| 扬字五行属什么| 鸡柳是什么肉| 辅酶q10什么时候吃| 吸水石是什么石头| 脑动脉硬化是什么意思| 茶叶里面含有什么成分| 木耳与什么食物相克| 梦见自己的哥哥死了是什么意思| 为什么突然有狐臭了| 11月12日什么星座| 寻麻疹涂抹什么药膏| 口腔溃疡喝什么| 女性夜尿多吃什么调理| 贫血会出现什么症状| 子时右眼跳是什么预兆| 尿素氮是什么| 什么时候测试怀孕最准确的| 工匠精神的核心是什么| 扬是什么生肖| 改良剂是什么| 雌二醇高说明什么| 里字五行属什么| 脚干裂用什么药最好| 心理卫生科看什么病的| 胸痛挂什么科| 水痘擦什么药膏好得快| 农夫与蛇是什么故事| 雌激素过高吃什么药| 过氧化氢是什么| 速干裤是什么面料| 六月份是什么季节| 检查免疫力都需要化验什么项目| 米西米西是什么意思| 斜纹棉是什么面料| 检查肾脏挂什么科| 子宫形态失常是什么意思| kpi什么意思| 静脉曲张是什么引起的| 恢复是什么意思| 荷叶配什么减肥效果好| 什么的原始森林| 早上喝豆浆有什么好处| 怀孕有积液是什么原因| 电饭锅内胆什么材质好| 抗氧化什么意思| 眼泪为什么是咸的| 酒后吃什么水果好| 马齿苋是什么菜| 产后抑郁症有什么表现症状| 髂胫束在什么位置| lotus是什么车| 全麦是什么| 什么地唱| 没心没肺是什么意思| 凿壁偷光告诉我们什么道理| 五月初六是什么星座| 恨不相逢未嫁时什么意思| 过敏性鼻炎用什么药最好| 参加白事回来注意什么| 原图是什么意思| 苦口婆心是什么生肖| 三妻四妾是什么生肖| 切诺是什么药| 什么是腹式呼吸| 黑舌头的狗是什么狗| 正科级是什么级别| 阿贝数是什么意思| 潜血是什么意思| 1989是什么生肖| 团购什么意思| 消炎药吃多了有什么副作用| img什么意思| 手脚软无力是什么原因引起的| 捡到鹦鹉是什么预兆| 阑尾炎手术后吃什么| 舌头有裂纹什么原因| 什么的玻璃| 肾结石忌口什么| 桂花什么时候开花| g代表什么单位| 腊八有什么讲究| 做爱为什么舒服| 新生儿黄疸高是什么原因| 吃什么可以快速美白| 鲶鱼吃什么食物| 梦到蜘蛛是什么意思| 白居易是诗什么| 入珠是什么| 1968属什么生肖| 什么是地中海饮食| 喝中药为什么会拉肚子| 孩子专注力差去什么医院检查| 何德何能是什么意思| 额头青筋凸起是什么原因| 肌肉代偿是什么意思| 竹者念什么| item是什么意思| cr5是什么意思| 什么属相不能戴貔貅| 菠萝蜜吃了有什么好处| 久而久之下一句是什么| 小肚子胀是什么原因女性| 5.29什么星座| 受戒是什么意思| 什么办法退烧快| 炭疽病是什么病| 细水长流是什么生肖| 岁贡生是什么意思| 46岁属什么| 吃中药不能吃什么水果| 生辰纲是什么东西| 鸭蛋炒什么好吃| hpv68阳性是什么意思| 中国女人裹脚是从什么时候开始| 挂件是什么意思| 戍是什么意思| 抽烟为什么会头晕| 单元剧是什么意思| 01年属什么的| jeep是什么牌子| 双子座是什么象星座| 内分泌代谢科是看什么病的| 足是什么结构| 你从什么时候不再爱我| 止鼾什么方法最有效| doosan挖掘机是什么牌子| 常染色体是什么| 梦见车丢了是什么征兆| 小腿有血栓是什么症状| 月经不调是什么原因造成的| 牙龈变黑是什么原因| 栗棕色是什么颜色| 打蛔虫吃什么药| 汽车抖动是什么原因| 晗字五行属什么| 喝什么茶叶减肥效果最好| 儿童上火吃什么药最好| 羽毛球鞋什么牌子好| 砥砺前行什么意思| 早搏是什么原因引起的| 纯原是什么意思| 用什么泡水喝补肾| 十一月底是什么星座| 300分能上什么大学| 幸福是什么的经典语录| 绊倒是什么意思| 梦见玫瑰花是什么预兆| 小白和兽神什么关系| 什么是便血| 男人腰疼是什么原因| 艾草泡脚有什么好处| 大学硕士点是什么意思| 脑血管堵塞会有什么后果| 梦见已故长辈什么预兆| 前列腺肥大吃什么药效果最好| 手起倒刺吃什么维生素| 耿耿什么| 左边小腹疼是什么原因| 巨蟹座是什么星象| 小孩流鼻血挂什么科| 鱼在鱼缸底部不动为什么| 什么泡茶好喝| 双喜临门指什么生肖| 一阴一阳是什么生肖| 吃天麻对身体有什么好处| 眼震是什么症状| 担当是什么| 肺主治节是什么意思| 颞下颌关节紊乱挂什么科| 尿酸偏高是什么原因| mmi是什么药| 老年人腿无力是什么原因导致的| 过命之交是什么意思| 鸭子烧什么配菜好吃| 中性粒细胞数目偏高是什么意思| 六根不净是什么意思| 7月15是什么节日| preparing是什么意思| 主任科员是什么级别| 音字五行属什么| st是什么单位| 疾苦的疾是什么意思| 斯里兰卡属于什么国家| 燃气灶什么牌子好| 皮炎用什么药膏| 左眉毛跳是什么预兆| 逐年是什么意思| 石花膏是什么做的| 隔夜茶为什么不能喝| 蝙蝠屎是什么中药| 百度

见多识广是什么生肖

(Redirected from Polynomial least squares)
百度 而实际上“民心”才是一个朝代稳定的基本要素。

In statistics, polynomial regression is a form of regression analysis in which the relationship between the independent variable x and the dependent variable y is modeled as a polynomial in x. Polynomial regression fits a nonlinear relationship between the value of x and the corresponding conditional mean of y, denoted E(y?|x). Although polynomial regression fits a nonlinear model to the data, as a statistical estimation problem it is linear, in the sense that the regression function E(y?|?x) is linear in the unknown parameters that are estimated from the data. Thus, polynomial regression is a special case of linear regression.

A cubic polynomial regression fit to a simulated data set. The confidence band is a 95% simultaneous confidence band constructed using the Scheffé approach.

The explanatory (independent) variables resulting from the polynomial expansion of the "baseline" variables are known as higher-degree terms. Such variables are also used in classification settings.[1]

History

edit

Polynomial regression models are usually fit using the method of least squares. The least-squares method minimizes the variance of the unbiased estimators of the coefficients, under the conditions of the Gauss–Markov theorem. The least-squares method was published in 1805 by Legendre and in 1809 by Gauss. The first design of an experiment for polynomial regression appeared in an 1815 paper of Gergonne.[2][3] In the twentieth century, polynomial regression played an important role in the development of regression analysis, with a greater emphasis on issues of design and inference.[4] More recently, the use of polynomial models has been complemented by other methods, with non-polynomial models having advantages for some classes of problems.[citation needed]

Definition and example

edit

The goal of regression analysis is to model the expected value of a dependent variable y in terms of the value of an independent variable (or vector of independent variables) x. In simple linear regression, the model

?

is used, where ε is an unobserved random error with mean zero conditioned on a scalar variable x. In this model, for each unit increase in the value of x, the conditional expectation of y increases by β1 units.

In many settings, such a linear relationship may not hold. For example, if we are modeling the yield of a chemical synthesis in terms of the temperature at which the synthesis takes place, we may find that the yield improves by increasing amounts for each unit increase in temperature. In this case, we might propose a quadratic model of the form

?

In this model, when the temperature is increased from x to x?+?1 units, the expected yield changes by ? (This can be seen by replacing x in this equation with x+1 and subtracting the equation in x from the equation in x+1.) For infinitesimal changes in x, the effect on y is given by the total derivative with respect to x: ? The fact that the change in yield depends on x is what makes the relationship between x and y nonlinear even though the model is linear in the parameters to be estimated.

In general, we can model the expected value of y as an nth degree polynomial, yielding the general polynomial regression model

?

Conveniently, these models are all linear from the point of view of estimation, since the regression function is linear in terms of the unknown parameters β0, β1,?.... Therefore, for least squares analysis, the computational and inferential problems of polynomial regression can be completely addressed using the techniques of multiple regression. This is done by treating x,?x2,?... as being distinct independent variables in a multiple regression model.

Matrix form and calculation of estimates

edit

The polynomial regression model

?

can be expressed in matrix form in terms of a design matrix ?, a response vector ?, a parameter vector ?, and a vector ? of random errors. The i-th row of ? and ? will contain the x and y value for the i-th data sample. Then the model can be written as a system of linear equations:

?

which when using pure matrix notation is written as

?

The vector of estimated polynomial regression coefficients (using ordinary least squares estimation) is

?

assuming m < n which is required for the matrix to be invertible; then since ? is a Vandermonde matrix, the invertibility condition is guaranteed to hold if all the ? values are distinct. This is the unique least-squares solution.

Expanded formulas

edit

The above matrix equations explain the behavior of polynomial regression well. However, to physically implement polynomial regression for a set of xy point pairs, more detail is useful. The below matrix equations for polynomial coefficients are expanded from regression theory without derivation and easily implemented.[5][6][7]

?

After solving the above system of linear equations for ?, the regression polynomial may be constructed as follows:

?

Interpretation

edit

Although polynomial regression is technically a special case of multiple linear regression, the interpretation of a fitted polynomial regression model requires a somewhat different perspective. It is often difficult to interpret the individual coefficients in a polynomial regression fit, since the underlying monomials can be highly correlated. For example, x and x2 have correlation around 0.97 when x is uniformly distributed on the interval (0,?1). Although the correlation can be reduced by using orthogonal polynomials, it is generally more informative to consider the fitted regression function as a whole. Point-wise or simultaneous confidence bands can then be used to provide a sense of the uncertainty in the estimate of the regression function.

Alternative approaches

edit

Polynomial regression is one example of regression analysis using basis functions to model a functional relationship between two quantities. More specifically, it replaces ? in linear regression with polynomial basis ?, e.g. ?. A drawback of polynomial bases is that the basis functions are "non-local", meaning that the fitted value of y at a given value x?=?x0 depends strongly on data values with x far from x0.[8] In modern statistics, polynomial basis-functions are used along with new basis functions, such as splines, radial basis functions, and wavelets. These families of basis functions offer a more parsimonious fit for many types of data.

The goal of polynomial regression is to model a non-linear relationship between the independent and dependent variables (technically, between the independent variable and the conditional mean of the dependent variable). This is similar to the goal of nonparametric regression, which aims to capture non-linear regression relationships. Therefore, non-parametric regression approaches such as smoothing can be useful alternatives to polynomial regression. Some of these methods make use of a localized form of classical polynomial regression.[9] An advantage of traditional polynomial regression is that the inferential framework of multiple regression can be used (this also holds when using other families of basis functions such as splines).

A final alternative is to use kernelized models such as support vector regression with a polynomial kernel.

If residuals have unequal variance, a weighted least squares estimator may be used to account for that.[10]

See also

edit

Notes

edit
  • Microsoft Excel makes use of polynomial regression when fitting a trendline to data points on an X Y scatter plot.[11]

References

edit
  1. ^ Yin-Wen Chang; Cho-Jui Hsieh; Kai-Wei Chang; Michael Ringgaard; Chih-Jen Lin (2010). "Training and testing low-degree polynomial data mappings via linear SVM". Journal of Machine Learning Research. 11: 1471–1490.
  2. ^ Gergonne, J. D. (November 1974) [1815]. "The application of the method of least squares to the interpolation of sequences". Historia Mathematica. 1 (4) (Translated by Ralph St. John and S. M. Stigler from the 1815 French?ed.): 439–447. doi:10.1016/0315-0860(74)90034-2.
  3. ^ Stigler, Stephen M. (November 1974). "Gergonne's 1815 paper on the design and analysis of polynomial regression experiments". Historia Mathematica. 1 (4): 431–439. doi:10.1016/0315-0860(74)90033-0.
  4. ^ Smith, Kirstine (1918). "On the Standard Deviations of Adjusted and Interpolated Values of an Observed Polynomial Function and its Constants and the Guidance They Give Towards a Proper Choice of the Distribution of the Observations". Biometrika. 12 (1/2): 1–85. doi:10.2307/2331929. JSTOR?2331929.
  5. ^ Muthukrishnan, Gowri (17 Jun 2018). "Maths behind Polynomial regression, Muthukrishnan". Maths behind Polynomial regression. Retrieved 30 Jan 2024.
  6. ^ "Mathematics of Polynomial Regression". Polynomial Regression, A PHP regression class.
  7. ^ Devore, Jay L. (1995). Probability and Statistics for Engineering and the Sciences (4th?ed.). US: Brooks/Cole Publishing Company. pp.?539–542. ISBN?0-534-24264-2.
  8. ^ Such "non-local" behavior is a property of analytic functions that are not constant (everywhere). Such "non-local" behavior has been widely discussed in statistics:
  9. ^ Fan, Jianqing (1996). Local Polynomial Modelling and Its Applications: From linear regression to nonlinear regression. Monographs on Statistics and Applied Probability. Chapman & Hall/CRC. ISBN?978-0-412-98321-4.
  10. ^ Conte, S.D.; De Boor, C. (2018). Elementary Numerical Analysis: An Algorithmic Approach. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104). p.?259. ISBN?978-1-61197-520-8. Retrieved 2025-08-14.
  11. ^ Stevenson, Christopher. "Tutorial: Polynomial Regression in Excel". facultystaff.richmond.edu. Retrieved 22 January 2017.
edit
什么叫增强ct 用什么泡脚可以活血化瘀疏通经络 胰腺炎能吃什么 渡情劫是什么意思 口干舌燥吃什么药最好
集体户口和个人户口有什么区别 吽是什么意思 national是什么牌子 元气什么意思 长乘宽乘高算的是什么
硬伤是什么意思 常吃猪油有什么好处和坏处 刚做了人流适合吃什么好 白内障有什么症状表现 飞机什么时候停止登机
鞘膜积液挂什么科 尿道炎有什么症状 夏天木瓜煲什么汤最好 嗓子痒是什么原因 口苦吃什么药最有效
史迪仔是什么动物bysq.com 三点水一个高念什么hcv7jop6ns3r.cn 蚊虫叮咬过敏用什么药hcv8jop1ns3r.cn 胆结石挂号挂什么科hcv8jop4ns0r.cn 男大三后面一句是什么hcv8jop3ns0r.cn
句号代表什么意思hcv8jop1ns8r.cn 并蒂是什么意思hcv8jop9ns9r.cn 尿少是什么原因hcv9jop8ns0r.cn 吃生红枣有什么好处hcv7jop9ns1r.cn 荷花是什么形状的hcv7jop5ns6r.cn
唯利是图是什么生肖hcv8jop7ns6r.cn 尿ph值高是什么意思hcv8jop9ns8r.cn 腰扭伤吃什么药最有效hcv8jop9ns1r.cn 借你吉言是什么意思hcv8jop8ns3r.cn 516是什么意思bfb118.com
手抖是什么病的前兆hcv9jop6ns9r.cn 做梦梦见钓鱼是什么意思hcv8jop3ns3r.cn 梦见种玉米是什么意思hcv8jop6ns6r.cn 六月十三是什么日子hcv9jop2ns4r.cn no医学上是什么意思hcv8jop7ns9r.cn
百度