淞字五行属什么| 有蛇进屋预兆着什么| 清净心是什么意思| 有市无价是什么意思| 为什么老是口腔溃疡| 阴虚火旺是什么意思| 膀胱ca是什么意思| 什么药可以通血管| 细菌性毛囊炎用什么药| 姑姑的弟弟叫什么| 梦见自己给别人钱是什么意思| 自主神经功能紊乱吃什么药| 醋有什么功效和作用| 胃泌素偏低是什么原因| 七月六号是什么星座| 女生打呼噜是什么原因| 女人小腹坠痛是什么原因| 曲率是什么意思| 鹊桥是什么意思| 黑眼袋是什么原因引起的| 尿蛋白阴性是什么意思| 什么姓氏排第一| 梦见胡萝卜是什么意思| 冲猪煞东是什么意思| 黄帝叫什么名字| 割爱是什么意思| 柠檬片泡水喝有什么功效和作用| 芒果可以做什么美食| 146是什么意思| 69式是什么意思| 麦穗是什么牌子| 刷酸什么意思| 什么手机好用| 属马是什么命| 属猪适合佩戴什么饰品| 什么不生四字成语| 梦见自己吐了是什么意思| 男人嘴角有痣代表什么| 梵蒂冈为什么没人敢打| 就义是什么意思| 苔藓是什么植物| 磷是什么| 阳历12月是什么星座| 为什么腋下会长小肉揪| 溶肌症的症状是什么| 沙眼衣原体是什么意思| 形态是什么意思| rdw是什么意思| 神经衰弱有什么症状| 什么运动降血糖最快| 五月二十日是什么日子| 中性粒细胞偏低是什么意思| 什么可以代替人体润滑油| 今天什么日子老黄历| 牙疼吃什么食物好得快| 13岁属什么生肖| 猪狗不如是什么生肖| 望梅止渴是什么故事| 鱼吃什么| 奕五行属什么| 什么雨| 外阴苔藓用什么药膏| 总胆固醇高是什么原因| 朋友梦到我怀孕了是什么意思| 枸杞喝多了有什么坏处| 5w是什么意思| 风热感冒是什么意思| 食用棕榈油是什么油| 一箭双雕是什么生肖| 嘴臭是什么原因| 槟榔肝是由什么引起的| 一张张什么| 口苦口臭吃什么药效果最佳| 什么样的梦才算是胎梦| 车前草的作用是什么| 桃符指的是什么| 常吃大蒜有什么好处| 老人适合吃什么水果| gfr医学上是什么意思| 骨质增生是什么意思| 皮肤黑穿什么颜色的衣服| 红烧肉是什么肉| 脚上长水泡是什么原因引起的| 什么地飞翔| 鳞状上皮增生是什么病| 吃什么食物养肝护肝| 男大女6岁有什么说法| hpv跟tct有什么区别| 什么是双一流大学| 丁亥日五行属什么| 佛法的真谛是什么| 左侧肚脐旁边疼是什么原因| 振幅是什么意思| 钢镚是什么意思| 日本有什么特产| 居住证有什么用| 女人骨质疏松吃什么最好| 上海有什么玩的| 小病不治下一句是什么| 做梦笑醒了有什么征兆| 三点水加亘念什么| 码子是什么意思| 1999年发生了什么| 心心相印是什么生肖| 安然无恙是什么意思| 锁骨下面的骨头叫什么| 风流是什么意思| 肾囊肿是什么原因引起的| 市政府办公室主任是什么级别| 呼吸道感染吃什么药最好| 硫酸铜什么颜色| 做春梦是什么意思| 肠胃不好吃什么药最好| 什么克水| 脊柱炎吃什么药效果好| 革兰氏阳性菌是什么病| 前列腺钙化灶是什么意思| 吃芒果后不能吃什么| 皮囊炎用什么药膏| 咽隐窝在什么位置| 舒张压是什么意思| 良性反应性改变是什么意思| 阴毛长虱子用什么药| zoom什么意思| 感冒咳嗽一直不好是什么原因| 身体缺钾吃什么药| 舌下腺囊肿挂什么科| 厚黑学讲的是什么| 气血不足吃什么比较好| meshor是什么牌子的手表| 什么鱼吃泥鳅| 821是什么星座| 宝路华手表什么档次| 生闷气是什么意思| 砂仁是什么| 反应蛋白高是什么原因| 小老头是什么意思| 睡醒后嘴巴苦什么原因| 鸡蛋过敏什么症状| 神经外科主要看什么病| 便秘吃什么益生菌| 朝九晚五是什么意思| 血压正常头晕是什么原因| 孕妇吃冰的东西对胎儿有什么影响| 下雨为什么会打雷闪电| 雁过拔毛是什么意思| 鼠配什么生肖最好| 妨子痣是什么意思| 喜用神是什么| mac是什么意思啊| 7月27号是什么星座| 大乔叫什么| tp是什么| 梦见戴孝是什么意思| 黑发晶五行属什么| 检查鼻炎要做什么检查| 女性排卵期是什么时候| 牙痛用什么药止痛快| 颈动脉彩超查什么| 山楂搭配什么泡水喝好| pap是什么意思| 699是什么意思| 宫腔内囊性回声是什么意思| 猫死后为什么要挂在树上| 吃核桃有什么好处和坏处| 肌酸是什么东西| 烫伤用什么消毒| 手淫会导致什么疾病| 脚趾头抽筋是什么原因引起的| 馐什么意思| 湖北九头鸟是什么意思| 手掌麻是什么原因引起的| 痛风不能吃什么东西| 烂苹果气味的是什么病| 苏州机场叫什么| 苦甲水是什么| 2004属什么生肖| 小孩做ct对身体有什么影响| 516是什么意思| 中心性肥胖什么意思| 1971属什么生肖| 做梦梦见前男友是什么意思| 龟头炎用什么| 女生额头长痘痘是什么原因| 早上起来嘴巴苦是什么原因| 儿童发育迟缓挂什么科| 孩子a型血父母什么血型| 口臭胃火大吃什么药好| 举牌什么意思| 梦到分手了是什么征兆| 鼻窦炎有什么症状| 药物流产后需要注意什么| 小鱼际发红预示着什么| 腹胀屁多是什么原因| 涉黑是什么意思| 黄瓜片贴脸上有什么效果| 什么样的人容易得心梗| 牛大力是什么| 小儿流清鼻涕吃什么药效果好| 阴虚火旺吃什么食物好| 万里长城是什么生肖| 蛇年五行属什么| 输卵管堵塞是什么原因| 三公经费指什么| 2b什么意思| 香奈儿是什么牌子| 大头虾是什么意思| 属马是什么星座| 什么时候最容易受孕| 血小板压积偏低是什么原因| 血糖低是什么原因| 深圳市长是什么级别| 波长是什么| 甲状腺彩超能查出什么| 冬菇有什么功效与作用| 无精打采是什么生肖| 黄曲霉菌是什么颜色| 心机血缺血是什么症状| 什么脸型最好看| 拔罐红色是什么原因| 李子和什么不能一起吃| 空调为什么不制冷| 牙疼不能吃什么东西| chihiro是什么意思| 步摇是什么| 比特币是什么意思| 安宫丸什么时候吃效果是最佳的| 箱变是什么| 梦见楼塌了是什么意思| 复查肺结节挂什么科| marlboro是什么烟| 哥们是什么意思| affairs是什么意思| 舌头有黑点是什么原因| 慢性盆腔炎吃什么药| 漂脱是什么意思| 身上泡疹是什么引起的| 什么叫梅毒| 风花雪月是什么意思| 肠胃炎可以吃什么食物| 欲情故纵什么意思| 梓代表什么意思| 孩子结膜炎用什么眼药水| bpd是胎儿的什么意思| 水中加什么擦玻璃干净| 泡酒用什么容器好| 指甲凹凸不平什么原因| 孕期能吃什么| 什么猫不掉毛| 吃什么水果变白| 荨麻疹什么原因引起的| 退位让贤是什么意思| 石敢当是什么意思| 后果自负是什么意思| 猪生肠是什么部位| 95年是什么命| 勾芡用什么粉| 手足口吃什么药| 孕妇吃什么会流产| 中国反导弹系统叫什么| 无拘无束的意思是什么| 天梭手表属于什么档次| 转基因和非转基因有什么区别| 气血虚吃什么药| 百度

胆固醇高是什么引起的

百度 实现“两个一百年”奋斗目标、实现中华民族伟大复兴的中国梦,不断提高人民生活水平,必须坚定不移把发展作为党执政兴国的第一要务,坚持解放和发展社会生产力,坚持社会主义市场经济改革方向,推动经济持续健康发展。

In probability theory and statistics, a collection of random variables is independent and identically distributed (i.i.d., iid, or IID) if each random variable has the same probability distribution as the others and all are mutually independent.[1] IID was first defined in statistics and finds application in many fields, such as data mining and signal processing.

A chart showing uniform distribution. Plot points are scattered randomly, with no pattern or clusters.
A chart showing a uniform distribution

Introduction

edit

Statistics commonly deals with random samples. A random sample can be thought of as a set of objects that are chosen randomly. More formally, it is "a sequence of independent, identically distributed (IID) random data points."

In other words, the terms random sample and IID are synonymous. In statistics, "random sample" is the typical terminology, but in probability, it is more common to say "IID."

  • Identically distributed means that there are no overall trends — the distribution does not fluctuate and all items in the sample are taken from the same probability distribution.
  • Independent means that the sample items are all independent events. In other words, they are not connected to each other in any way;[2] knowledge of the value of one variable gives no information about the value of the other and vice versa.

Application

edit

Independent and identically distributed random variables are often used as an assumption, which tends to simplify the underlying mathematics. In practical applications of statistical modeling, however, this assumption may or may not be realistic.[3]

The i.i.d. assumption is also used in the central limit theorem, which states that the probability distribution of the sum (or average) of i.i.d. variables with finite variance approaches a normal distribution.[4]

The i.i.d. assumption frequently arises in the context of sequences of random variables. Then, "independent and identically distributed" implies that an element in the sequence is independent of the random variables that came before it. In this way, an i.i.d. sequence is different from a Markov sequence, where the probability distribution for the nth random variable is a function of the previous random variable in the sequence (for a first-order Markov sequence). An i.i.d. sequence does not imply the probabilities for all elements of the sample space or event space must be the same.[5] For example, repeated throws of loaded dice will produce a sequence that is i.i.d., despite the outcomes being biased.

In signal processing and image processing, the notion of transformation to i.i.d. implies two specifications, the "i.d." part and the "i." part:

i.d. – The signal level must be balanced on the time axis.

i. – The signal spectrum must be flattened, i.e. transformed by filtering (such as deconvolution) to a white noise signal (i.e. a signal where all frequencies are equally present).

Definition

edit

Definition for two random variables

edit

Suppose that the random variables ? and ? are defined to assume values in ?. Let ? and ? be the cumulative distribution functions of ? and ?, respectively, and denote their joint cumulative distribution function by ?.

Two random variables ? and ? are independent if and only if ? for all ?. (For the simpler case of events, two events ? and ? are independent if and only if ?, see also Independence (probability theory) §?Two random variables.)

Two random variables ? and ? are identically distributed if and only if ? for all ?. [6]

Two random variables ? and ? are i.i.d. if they are independent and identically distributed, i.e. if and only if

?

Definition for more than two random variables

edit

The definition extends naturally to more than two random variables. We say that ? random variables ? are i.i.d. if they are independent (see further Independence (probability theory) §?More than two random variables) and identically distributed, i.e. if and only if

?

where ? denotes the joint cumulative distribution function of ?.

Examples

edit

Example 1

edit

A sequence of outcomes of spins of a fair or unfair roulette wheel is i.i.d. One implication of this is that if the roulette ball lands on "red", for example, 20 times in a row, the next spin is no more or less likely to be "black" than on any other spin (see the gambler's fallacy).

Example 2

edit

Toss a coin 10 times and write down the results into variables ?.

  1. Independent: Each outcome ? will not affect the other outcome ? (for ? from 1 to 10), which means the variables ? are independent of each other.
  2. Identically distributed: Regardless of whether the coin is fair (with a probability of 1/2 for heads) or biased, as long as the same coin is used for each flip, the probability of getting heads remains consistent across all flips.

Such a sequence of i.i.d. variables is also called a Bernoulli process.

Example 3

edit

Roll a die 10 times and save the results into variables ?.

  1. Independent: Each outcome of the die roll will not affect the next one, which means the 10 variables are independent from each other.
  2. Identically distributed: Regardless of whether the die is fair or weighted, each roll will have the same probability of seeing each result as every other roll. In contrast, rolling 10 different dice, some of which are weighted and some of which are not, would not produce i.i.d. variables.

Example 4

edit

Choose a card from a standard deck of cards containing 52 cards, then place the card back in the deck. Repeat this 52 times. Observe when a king appears.

  1. Independent: Each observation will not affect the next one, which means the 52 results are independent from each other. In contrast, if each card that is drawn is kept out of the deck, subsequent draws would be affected by it (drawing one king would make drawing a second king less likely), and the observations would not be independent.
  2. Identically distributed: After drawing one card from it (and then returning the card to the deck), each time the probability for a king is 4/52, which means the probability is identical each time.

Generalizations

edit

Many results that were first proven under the assumption that the random variables are i.i.d. have been shown to be true even under a weaker distributional assumption.

Exchangeable random variables

edit

The most general notion which shares the main properties of i.i.d. variables are exchangeable random variables, introduced by Bruno de Finetti.[citation needed] Exchangeability means that while variables may not be independent, future ones behave like past ones — formally, any value of a finite sequence is as likely as any permutation of those values — the joint probability distribution is invariant under the symmetric group.

This provides a useful generalization — for example, sampling without replacement is not independent, but is exchangeable.

Lévy process

edit

In stochastic calculus, i.i.d. variables are thought of as a discrete time Lévy process: each variable gives how much one changes from one time to another. For example, a sequence of Bernoulli trials is interpreted as the Bernoulli process.

This could be generalized to include continuous time Lévy processes, and many Lévy processes can be seen as limits of i.i.d. variables—for instance, the Wiener process is the limit of the Bernoulli process.

In machine learning

edit

Machine learning (ML) involves learning statistical relationships within data. To train ML models effectively, it is crucial to use data that is broadly generalizable. If the training data is insufficiently representative of the task, the model's performance on new, unseen data may be poor.

The i.i.d. hypothesis allows for a significant reduction in the number of individual cases required in the training sample, simplifying optimization calculations. In optimization problems, the assumption of independent and identical distribution simplifies the calculation of the likelihood function. Due to this assumption, the likelihood function can be expressed as:

?

To maximize the probability of the observed event, the log function is applied to maximize the parameter ?. Specifically, it computes:

?

where

?

Computers are very efficient at performing multiple additions, but not as efficient at performing multiplications. This simplification enhances computational efficiency. The log transformation, in the process of maximizing, converts many exponential functions into linear functions.

There are two main reasons why this hypothesis is practically useful with the central limit theorem (CLT):

  1. Even if the sample originates from a complex non-Gaussian distribution, it can be well-approximated because the CLT allows it to be simplified to a Gaussian distribution.
  2. The second reason is that the model's accuracy depends on the simplicity and representational power of the model unit, as well as the data quality. The simplicity of the unit makes it easy to interpret and scale, while the representational power and scalability improve model accuracy. In a deep neural network, for instance, each neuron is simple yet powerful in representation, layer by layer, capturing more complex features to enhance model accuracy.

See also

edit

References

edit
  1. ^ Clauset, Aaron (2011). "A brief primer on probability distributions" (PDF). Santa Fe Institute. Archived from the original (PDF) on 2025-08-14. Retrieved 2025-08-14.
  2. ^ Stephanie (2025-08-14). "IID Statistics: Independent and Identically Distributed Definition and Examples". Statistics How To. Retrieved 2025-08-14.
  3. ^ Hampel, Frank (1998), "Is statistics too difficult?", Canadian Journal of Statistics, 26 (3): 497–513, doi:10.2307/3315772, hdl:20.500.11850/145503, JSTOR?3315772, S2CID?53117661 (§8).
  4. ^ Blum, J. R.; Chernoff, H.; Rosenblatt, M.; Teicher, H. (1958). "Central Limit Theorems for Interchangeable Processes". Canadian Journal of Mathematics. 10: 222–229. doi:10.4153/CJM-1958-026-0. S2CID?124843240.
  5. ^ Cover, T. M.; Thomas, J. A. (2006). Elements Of Information Theory. Wiley-Interscience. pp.?57–58. ISBN?978-0-471-24195-9.
  6. ^ Casella & Berger 2002, Theorem?1.5.10

Further reading

edit
prp是什么意思 算五行缺什么免费测试 什么的叮咛 咽炎有什么症状 龙代表什么数字
apf值是什么意思 忽冷忽热是什么意思 什么是月经不调 性生活时间短吃什么药 什么年树木
孕妇不吃饭对胎儿有什么影响 菠萝蜜不能和什么一起吃 上午十点半是什么时辰 睡眠好的人说明什么 十二生肖本领强是什么生肖
妈妈的哥哥的老婆叫什么 蔻驰香水属于什么档次 为什么会勃起 是什么货币符号 牙齿一碰就疼是什么原因
小猫吃什么cl108k.com 冠状动脉肌桥是什么病hcv7jop9ns5r.cn 闫和阎有什么区别hcv7jop6ns3r.cn 什么水果有助于减肥hcv9jop6ns9r.cn 笔画最多的字是什么字kuyehao.com
有出息是什么意思hcv8jop0ns4r.cn 一什么鸟窝tiangongnft.com 平血头晕吃什么药最好hcv8jop1ns8r.cn 日本什么值得买hcv8jop9ns1r.cn opple是什么牌子hcv9jop0ns1r.cn
中国最毒的蛇是什么蛇hcv9jop1ns5r.cn 性格内向的人适合做什么工作shenchushe.com 鸭子什么时候下蛋520myf.com tam是什么意思hcv9jop1ns4r.cn 全腹部ct平扫主要检查什么bjcbxg.com
什么是九宫格hcv9jop0ns4r.cn 红糖荷包蛋有什么功效hcv8jop5ns5r.cn 大鼻是什么生肖liaochangning.com 什么是胎记aiwuzhiyu.com 体位性低血压是什么hcv9jop6ns6r.cn
百度